Entity

Time filter

Source Type


Kroesen M.,Nijmegen Center for Molecular Life science
Immunotherapy | Year: 2012

Neuroblastoma (NBL) is an aggressive malignancy of the sympathetic nervous system. Advanced-stage NBLs prove fatal in approximately 50% of patients within 5 years. Therefore, new treatment modalities are urgently needed. Immunotherapy is a treatment modality that can be combined with established forms of treatment. Administration of monoclonal antibodies or dendritic cell-based therapies alone can lead to favorable clinical outcomes in individual cancer patients; for example patients with melanoma, lymphoma and NBL. However, clinical benefit is still limited to a minority of patients, and further improvements are clearly needed. In this article, we review the most commonly used approaches to treat patients with NBL and highlight the prerequisites and opportunities of cell-based immunotherapy, involving both innate and adaptive immune-effector cells. Furthermore, we discuss the potential of the combined application of immunotherapy and novel tumor-targeted therapies for the treatment of both cancer in general and NBL in particular. Source


Arif M.A.,Nijmegen Center for Molecular Life science | Frank W.,Ludwig Maximilians University of Munich | Khraiwesh B.,King Abdullah University of Science and Technology
International Journal of Molecular Sciences | Year: 2013

RNA interference (RNAi) is a mechanism that regulates genes by either transcriptional (TGS) or posttranscriptional gene silencing (PTGS), required for genome maintenance and proper development of an organism. Small non-coding RNAs are the key players in RNAi and have been intensively studied in eukaryotes. In plants, several classes of small RNAs with specific sizes and dedicated functions have evolved. The major classes of small RNAs include microRNAs (miRNAs) and small interfering RNAs (siRNAs), which differ in their biogenesis. miRNAs are synthesized from a short hairpin structure while siRNAs are derived from long double-stranded RNAs (dsRNA). Both miRNA and siRNAs control the expression of cognate target RNAs by binding to reverse complementary sequences mediating cleavage or translational inhibition of the target RNA. They also act on the DNA and cause epigenetic changes such as DNA methylation and histone modifications. In the last years, the analysis of plant RNAi pathways was extended to the bryophyte Physcomitrella patens, a non-flowering, non-vascular ancient land plant that diverged from the lineage of seed plants approximately 450 million years ago. Based on a number of characteristic features and its phylogenetic key position in land plant evolution P. patens emerged as a plant model species to address basic as well as applied topics in plant biology. Here we summarize the current knowledge on the role of RNAi in P. patens that shows functional overlap with RNAi pathways from seed plants, and also unique features specific to this species. © 2013 by the authors; licensee MDPI, Basel, Switzerland. Source


Hoeijmakers W.A.,Nijmegen Center for Molecular Life science
Methods in molecular biology (Clifton, N.J.) | Year: 2013

Transcriptome analysis by next-generation sequencing (RNA-seq) allows investigation of a transcriptome at unsurpassed resolution. One major benefit is that RNA-seq is independent of a priori knowledge on the sequence under investigation, thereby also allowing analysis of poorly characterized Plasmodium species. Here we provide a detailed protocol for RNA isolation and fragmentation, ribosomal RNA depletion, and cDNA synthesis that enables the preparation of a sequencing library from 1 to 2 μg of total RNA. Although we focus our discussion on the quantitative measurement of gene expression, this protocol is suited for many applications of RNA-seq and allows analysis of most RNA species. Source


Touw I.P.,Erasmus Medical Center | Palande K.,Nijmegen Center for Molecular Life science | Beekman R.,Erasmus Medical Center
Hematology/Oncology Clinics of North America | Year: 2013

Following activation by their cognate ligands, cytokine receptors undergo intracellular routing toward lysosomes, where they are degraded. This review focuses on the signaling function of the G-CSFR in relation to the dynamics of endosomal routing of the G-CSFR. Mechanisms involving receptor lysine ubiquitination and redox-controlled phosphatase activities are discussed. Specific attention is paid to the consequences of G-CSFR mutations, acquired in patients with severe congenital neutropenias who receive G-CSF therapy, particularly in the context of leukemic transformation, a major clinical complication of the disease. © 2013 Elsevier Inc. Source


Christianson H.C.,Skane University Hospital | van Kuppevelt T.H.,Nijmegen Center for Molecular Life science | Belting M.,Skane University Hospital
PLoS ONE | Year: 2012

Tumor development requires angiogenesis and anti-angiogenic therapies have been introduced in the treatment of cancer. In this context, heparan sulfate proteoglycans (HSPGs) emerge as interesting targets, owing to their function as co-receptors of major, pro-angiogenic factors. Accordingly, previous studies have suggested anti-tumor effects of heparin, i.e. over-sulfated HS, and various heparin mimetics; however, a significant drawback is their unspecific mechanism of action and potentially serious side-effects related to their anticoagulant properties. Here, we have explored the use of human ScFv anti-HS antibodies (αHS) as a more rational approach to target HSPG function in endothelial cells (ECs). αHS were initially selected for their recognition of HS epitopes localized preferentially to the vasculature of patient glioblastoma tumors, i.e. highly angiogenic brain tumors. Unexpectedly, we found that these αHS exhibited potent pro-angiogenic effects in primary human ECs. αHS were shown to stimulate EC differentiation, which was associated with increased EC tube formation and proliferation. Moreover, αHS supported EC survival under hypoxia and starvation, i.e. conditions typical of the tumor microenvironment. Importantly, αHS-mediated proliferation was efficiently counter-acted by heparin and was absent in HSPG-deficient mutant cells, confirming HS-specific effects. On a mechanistic level, binding of αHS to HSPGs of ECs as well as glioblastoma cells was found to trigger p38 MAPK-dependent signaling resulting in increased proliferation. We conclude that several αHS that recognize HS epitopes abundant in the tumor vasculature may elicit a pro-angiogenic response, which has implications for the development of antibody-based targeting of HSPGs in cancer. © 2012 Christianson et al. Source

Discover hidden collaborations