Time filter

Source Type

Niigata-shi, Japan

Niigata University of Pharmacy and Applied Life science is a private university in Niigata, Niigata, Japan. It was established in 1977. Wikipedia.

Shigematsu T.,Niigata University of Pharmacy and Applied Life Sciences
Sub-Cellular Biochemistry | Year: 2015

Beside intensive studies on inactivation microorganisms by high hydrostatic pressure (HP) for food storage, pressure effects on property of food materials have also been studied based on knowledge in pressure effect on biomolecules. Pressure effects on biological membranes and mass transfer in cellular biological materials and on enzyme activity would give an idea that HP treatment can introduce two types of activations into food materials: improved mass transfer and enzyme activity. Studies focusing on these pressure activations on food materials were then reviewed. Rice flour with an exclusively fine mean particle size and small starch damage was obtained due to improved water absorption properties and/or enzyme activity by HP. HP treatment increased of free amino acids and ”-aminobutyric acid (GABA) in rice and soybeans due to improved proteolysis and amino acid metabolism. Improvement of antioxidant activity and alteration of polyphenolic-compounds composition in food materials were also demonstrated by HP treatment. The HP-induced activations on food materials could contribute towards processing technologies for food quality improvement. © Springer Science+Business Media Dordrecht 2015.

Tamura M.,Hokkaido University | Sato M.M.,Hokkaido University | Nashimoto M.,Niigata University of Pharmacy and Applied Life Sciences
International Journal of Biochemistry and Cell Biology | Year: 2011

CXCL12 (stromal cell-derived factor-1, SDF-1), produced by stromal and endothelial cells including cells of the bone marrow, binds to its receptor CXCR4 and this axis regulates hematopoietic cell trafficking. Recently, osteoclast precursor cells were found to express CXCR4 and a potential role for the CXCL12-CXCR4 axis during osteoclast precursor cell recruitment/retention and development was proposed as a regulator of bone resorption. We examined the role of canonical Wnt signaling in regulating the expression of CXCL12 in bone marrow stromal cells. In mouse stromal ST2 cells, CXCL12 mRNA was expressed, while its expression was reduced in Wnt3a over-expressing ST2 (Wnt3a-ST2) cells or by treatment with lithium chloride (LiCl). Wnt3a decreased CXCL12 levels in culture supernatants from mouse bone marrow stromal cells. The culture supernatant from Wnt3a-ST2 cells also reduced migratory activity of bone marrow-derived cells in a Transwell migration assay. Silencing of glycogen synthase kinase-3β decreased CXCL12 expression, suggesting that the canonical Wnt signaling pathway regulates CXCL12 expression. In a transfection assay, LiCl down-regulated the activity of a reporter gene, a 1.8 kb fragment of the 5′-flanking region of the CXCL12 gene. These results show that canonical Wnt signaling regulates CXCL12 gene expression at the transcriptional level, and this is the first study linking chemokine expression to canonical Wnt signaling. © 2011 Elsevier Ltd.

Yamaguchi T.,Niigata University of Pharmacy and Applied Life Sciences | Hamamoto S.,Tohoku University | Uozumi N.,Tohoku University
Frontiers in Plant Science | Year: 2013

Since sodium, Na, is a non-essential element for the plant growth, the molecular mechanism of Na+ transport system in plants has remained elusive for the last two decades. The accumulation of Na+ in soil through irrigation for sustainable agricultural crop production, particularly in arid land, and by changes in environmental and climate conditions leads to the buildup of toxic level of salts in the soil. Since the latter half of the twentieth century, extensive molecular research has identified several classes of Na+ transporters that play major roles in the alleviation of ionic stress by excluding toxic Na+ from the cytosol or preventing Na+ transport to the photosynthetic organs, and also in osmotic stress by modulating intra/extracellular osmotic balance. In this review, we summarize the current knowledge of three major Na+ transporters, namely NHX, SOS1, and HKT transporters, including recently revealed characteristics of these transporters. © 2013 Yamaguchi, Hamamoto and Uozumi.

Shibuya M.,University of Tokyo | Shibuya M.,Niigata University of Pharmacy and Applied Life Sciences | Nishimura K.,University of Tokyo | Yasuyama N.,University of Tokyo | Ebizuka Y.,University of Tokyo
FEBS Letters | Year: 2010

Triterpene saponins are a diverse group of compounds with a structure consisting of a triterpene aglycone and sugars. Identification of the sugar-transferase involved in triterpene saponin biosynthesis is difficult due to the structural complexity of triterpene saponin. Two glycosyltransferases from Glycine max, designated as GmSGT2 and GmSGT3, were identified and characterized. In vitro analysis revealed that GmSGT2 transfers a galactosyl group from UDP-galactose to soyasapogenol B monoglucuronide, and that GmSGT3 transfers a rhamnosyl group from UDP-rhamnose to soyasaponin III. These results suggest that soyasaponin I is biosynthesized from soyasapogenol B by successive sugar transfer reactions. © 2010 Federation of European Biochemical Societies.

Kawano M.,Niigata University of Pharmacy and Applied Life Sciences
RNA Biology | Year: 2012

Toxin-antitoxin (TA) systems are categorized into three classes based on the type of antitoxin. In type I TA systems, the antitoxin is a small antisense RNA that inhibits translation of small toxic proteins by binding to the corresponding mRNAs. Those type I TA systems were originally identified as plasmid stabilization modules rendering a post-segregational killing (PSK) effect on the host cells. The type I TA loci also exist on the Escherichia coli chromosome but their biological functions are less clear. Genetic organization and regulatory elements of hok/sok and ldr/rdl families are very similar and the toxins are predicted to contain a transmembrane domain, but otherwise share no detectable sequence similarity. This review will give an overview of the type I TA modules of E. coli K-12, especially hok/sok, ldr/rdl and SOS-inducible symE/symR systems, which are regulated by divergently overlapping cis-encoded antisense RNAs. © 2012 Landes Bioscience.

Discover hidden collaborations