Time filter

Source Type

Gregson C.L.,University of Bristol | Wheeler L.,University of Queensland | Hardcastle S.A.,University of Bristol | Appleton L.H.,NIHR Oxford Musculoskeletal Biomedical Research Unit | And 17 more authors.
Journal of Bone and Mineral Research | Year: 2016

High bone mass (HBM) can be an incidental clinical finding; however, monogenic HBM disorders (eg, LRP5 or SOST mutations) are rare. We aimed to determine to what extent HBM is explained by mutations in known HBM genes. A total of 258 unrelated HBM cases were identified from a review of 335,115 DXA scans from 13 UK centers. Cases were assessed clinically and underwent sequencing of known anabolic HBM loci: LRP5 (exons 2, 3, 4), LRP4 (exons 25, 26), SOST (exons 1, 2, and the van Buchem's disease [VBD] 52-kb intronic deletion 3′). Family members were assessed for HBM segregation with identified variants. Three-dimensional protein models were constructed for identified variants. Two novel missense LRP5 HBM mutations ([c.518C>T; p.Thr173Met], [c.796C>T; p.Arg266Cys]) were identified, plus three previously reported missense LRP5 mutations ([c.593A>G; p.Asn198Ser], [c.724G>A; p.Ala242Thr], [c.266A>G; p.Gln89Arg]), associated with HBM in 11 adults from seven families. Individuals with LRP5 HBM (prevalence 5/100,000) displayed a variable phenotype of skeletal dysplasia with increased trabecular BMD and cortical thickness on HRpQCT, and gynoid fat mass accumulation on DXA, compared with both non-LRP5 HBM and controls. One mostly asymptomatic woman carried a novel heterozygous nonsense SOST mutation (c.530C>A; p.Ser177X) predicted to prematurely truncate sclerostin. Protein modeling suggests the severity of the LRP5-HBM phenotype corresponds to the degree of protein disruption and the consequent effect on SOST-LRP5 binding. We predict p.Asn198Ser and p.Ala242Thr directly disrupt SOST binding; both correspond to severe HBM phenotypes (BMD Z-scores +3.1 to +12.2, inability to float). Less disruptive structural alterations predicted from p.Arg266Cys, p.Thr173Met, and p.Gln89Arg were associated with less severe phenotypes (Z-scores +2.4 to +6.2, ability to float). In conclusion, although mutations in known HBM loci may be asymptomatic, they only account for a very small proportion (3%) of HBM individuals, suggesting the great majority are explained by either unknown monogenic causes or polygenic inheritance. © 2015 The Authors Journal of Bone and Mineral Research published by Wiley Periodicals, Inc.

Wartolowska K.,University of Oxford | Hough M.G.,University of Oxford | Jenkinson M.,University of Oxford | Andersson J.,University of Oxford | And 2 more authors.
Arthritis and Rheumatism | Year: 2012

Objective To investigate whether structural changes are present in the cortical and subcortical gray matter of the brains of patients with rheumatoid arthritis (RA). Methods We used two surface-based style morphometry analysis programs and a voxel-based style analysis program to compare high-resolution structural magnetic resonance imaging data obtained for 31 RA patients and 25 age- and sex-matched healthy control subjects. Results We observed an increase in gray matter content in the basal ganglia of RA patients, mainly in the nucleus accumbens and caudate nucleus. There were no differences in the cortical gray matter. Moreover, patients had a smaller intracranial volume. Conclusion Our results suggest that RA is associated with changes in the subcortical gray matter rather than with cortical gray matter atrophy. Since the basal ganglia play an important role in motor control as well as in pain processing and in modulating behavior in response to aversive stimuli, we suggest that these changes may result from altered motor control or prolonged pain processing. The differences in brain volume may reflect either generalized atrophy or differences in brain development. © 2012 American College of Rheumatology.

Keidel S.,University of Oxford | Chen L.,Weatherall Institute of Molecular Medicine | Pointon J.,University of Oxford | Wordsworth P.,University of Oxford | Wordsworth P.,NIHR Oxford Musculoskeletal Biomedical Research Unit
Current Opinion in Immunology | Year: 2013

The strong genetic association of ERAP1 (endoplasmic reticulum aminopeptidase 1) with ankylosing spondylitis (AS), which is restricted to HLA-B27 positive cases, has profound pathogenetic implications. ERAP1 is involved in trimming peptides to optimal length for binding to HLA class 1 molecules, thereby not only affecting the stability and processing of HLA-B27 but also influencing the peptide repertoire presented to the immune system. This could have secondary effects on specific adaptive or autoimmune responses in AS. However, it appears increasingly likely that the pathogenic effect of ERAP1 may be mediated through effects on innate immunity, such as altering the interaction between HLA-B27 and immune receptors such as the killer immunoglobulin-like receptors (KIR) found on a range of innate immune cells or via the endoplasmic reticulum unfolded protein response. ERAP1 variants associated with reduced endopeptidase activity appear to be protective against AS, raising the possibility that ERAP1 inhibition could represent a future treatment strategy. © 2012 Elsevier Ltd.

Cortes A.,University of Queensland | Maksymowych W.P.,University of Alberta | Wordsworth B.P.,NIHR Oxford Musculoskeletal Biomedical Research Unit | Inman R.D.,Toronto Western Hospital | And 15 more authors.
Annals of the Rheumatic Diseases | Year: 2015

Objective: To identify genetic associations with severity of radiographic damage in ankylosing spondylitis (AS). Method: We studied 1537 AS cases of European descent; all fulfilled the modified New York Criteria. Radiographic severity was assessed from digitised lateral radiographs of the cervical and lumbar spine using the modified Stoke Ankylosing Spondylitis Spinal Score (mSASSS). A two-phase genotyping design was used. In phase 1, 498 single nucleotide polymorphisms (SNPs) were genotyped in 688 cases; these were selected to capture >90% of the common haplotypic variation in the exons, exon - intron boundaries, and 5 kb flanking DNA in the 5′ and 3′ UTR of 74 genes involved in anabolic or catabolic bone pathways. In phase 2, 15 SNPs exhibiting p<0.05 were genotyped in a further cohort of 830 AS cases; results were analysed both separately and in combination with the discovery phase data. Association was tested by contingency tables after separating the samples into 'mild' and 'severe' groups, defined as the bottom and top 40% by mSASSS, adjusted for gender and disease duration. Results: Experiment-wise association was observed with the SNP rs8092336 (combined OR 0.32, p=1.2×10-5), which lies within RANK (receptor activator of NFκB), a gene involved in osteoclastogenesis, and in the interaction between T cells and dendritic cells. Association was also found with the SNP rs1236913 in PTGS1 (prostaglandin-endoperoxide synthase 1, cyclooxygenase 1), giving an OR of 0.53 (p=2.6×10-3). There was no observed association between radiographic severity and HLA-B∗27. Conclusions: These findings support roles for bone resorption and prostaglandins pathways in the osteoproliferative changes in AS. © 2015, BMJ Publishing Group. All rights reserved.

Brown M.A.,University of Queensland | Kenna T.,University of Queensland | Wordsworth B.P.,NIHR Oxford Musculoskeletal Biomedical Research Unit
Nature Reviews Rheumatology | Year: 2016

Ankylosing spondylitis (AS), an immune-mediated arthritis, is the prototypic member of a group of conditions known as spondyloarthropathies that also includes reactive arthritis, psoriatic arthritis and enteropathic arthritis. Patients with these conditions share a clinical predisposition for spinal and pelvic joint dysfunction, as well as genetic associations, notably with HLA-B∗27. Spondyloarthropathies are characterized by histopathological inflammation in entheses (regions of high mechanical stress where tendons and ligaments insert into bone) and in the subchondral bone marrow, and by abnormal osteoproliferation at involved sites. The association of AS with HLA-B∗27, first described >40 years ago, led to hope that the cause of the disease would be rapidly established. However, even though many theories have been advanced to explain how HLA-B∗27 is involved in AS, no consensus about the answers to this question has been reached, and no successful treatments have yet been developed that target HLA-B27 or its functional pathways. Over the past decade, rapid progress has been made in discovering further genetic associations with AS that have shed new light on the aetiopathogenesis of the disease. Some of these discoveries have driven translational ideas, such as the repurposing of therapeutics targeting the cytokines IL-12 and IL-23 and other factors downstream of this pathway. AS provides an excellent example of how hypothesis-free research can lead to major advances in understanding pathogenesis and to the development of innovative therapeutic strategies. © 2016 Macmillan Publishers Limited. All rights reserved.

Discover hidden collaborations