Entity

Time filter

Source Type

Ina, Japan

Nihon Pharmaceutical University is a private university in Ina, Saitama, Japan, established in 2004. Wikipedia.


Anzai K.,Nihon Pharmaceutical University | Ban N.,University of Tokyo | Ozawa T.,Yokohama College of Pharmacy | Tokonami S.,Hirosaki University
Journal of Clinical Biochemistry and Nutrition | Year: 2012

On March 11, 2011 an earthquake led to major problems at the Fukushima Daiichi Nuclear Power Plant. A 14-m high tsunami triggered by the earthquake disabled all AC power to Units 1, 2, and 3 of the Power Plant, and carried off fuel tanks for emergency diesel generators. Despite many efforts, cooling systems did not work and hydrogen explosions damaged the facilities, releasing a large amount of radioactive material into the environment. In this review, we describe the environmental impact of the nuclear accident, and the fundamental biological effects, acute and late, of the radiation. Possible medical countermeasures to radiation exposure are also discussed. ©2012 JCBN. Source


Nakagawa K.,Fukushima Medical University | Anzai K.,Nihon Pharmaceutical University
Applied Magnetic Resonance | Year: 2010

Using electron paramagnetic resonance (EPR), we investigated stable radical-production cross sections (σ) of sucrose and L-alanine radicals produced by heavy-ion irradiations with various linear energy transfers (LET). The heavy-ion irradiation results were compared with those of X-ray irradiation at the same dose. The EPR signal areas for the two compounds showed a linear relation with the absorbed dose, as well as a logarithmic correlation with the LET. Further analysis was carried out for the radical-production cross section, which showed that stable radicals of the two compounds were produced through collisions of several particles with a single molecule. The relative σ value of sucrose for C ion irradiation was (1.29 ± 0.64) × 10-12 μm2. The σ value of alanine for C ion irradiation was (6.83 ± 0.42) × 10-13 μm2. Considering the structural molecular sizes of sucrose and alanine, the σ values are similar. In addition, a comparison of the EPR results for the C ions and X-rays at 50 Gy dose was made. Sucrose spin concentrations produced by C ions at the LET value of 13.1 keV/μm and X-rays were similar unlike alanine. Thus, the noble EPR results with X-ray and heavy-ion irradiations imply that sucrose can be useful as a radiation indicator. © 2010 Springer. Source


Kitamura S.,Nihon Pharmaceutical University | Sugihara K.,Hiroshima International University
Xenobiotica | Year: 2014

1. Human-chimeric mice with humanized liver have been constructed by transplantation of human hepatocytes into several types of mice having genetic modifications that injure endogenous liver cells. Here, we focus on liver urokinase-type plasminogen activator-transgenic severe combined immunodeficiency (uPA/SCID) mice, which are the most widely used human-chimeric mice. Studies so far indicate that drug metabolism, drug transport, pharmacological effects and toxicological action in these mice are broadly similar to those in humans. 2. Expression of various drug-metabolizing enzymes is known to be different between humans and rodents. However, the expression pattern of cytochrome P450, aldehyde oxidase and phase II enzymes in the liver of human-chimeric mice resembles that in humans, not that in the host mice. 3. Metabolism of various drugs, including S-warfarin, zaleplon, ibuprofen, naproxen, coumarin, troglitazone and midazolam, in human-chimeric mice is mediated by human drug-metabolizing enzymes, not by host mouse enzymes, and thus resembles that in humans. 4. Pharmacological and toxicological effects of various drugs in human-chimeric mice are also similar to those in humans. 5. The current consensus is that chimeric mice with humanized liver are useful to predict drug metabolism catalyzed by cytochrome P450, aldehyde oxidase and phase II enzymes in humans in vivo and in vitro. Some remaining issues are discussed in this review. © 2014 Informa UK Ltd. All rights reserved: reproduction in whole or part not permitted. Source


Tsukahara T.,Shinshu University | Haniu H.,Shinshu University | Matsuda Y.,Nihon Pharmaceutical University
PLoS ONE | Year: 2013

Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear receptor that plays an essential role in cell proliferation, apoptosis, and inflammation. It is over-expressed in many types of cancer, including colon, stomach, breast, and lung cancer, suggesting that regulation of PPARγ might affect cancer pathogenesis. Here, using a proteomic approach, we identify PTB-associated splicing factor (PSF) as a novel PPARγ-interacting protein and demonstrate that PSF is involved in several important regulatory steps of colon cancer cell proliferation. To investigate the relationship between PSF and PPARγ in colon cancer, we evaluated the effects of PSF expression in DLD-1 and HT-29 colon cancer cell lines, which express low and high levels of PPARγ, respectively PSF affected the ability of PPARγ to bind, and expression of PSF siRNA significantly suppressed the proliferation of colon cancer cells. Furthermore, PSF knockdown induced apoptosis via activation of caspase-3. Interestingly, DLD-1 cells were more susceptible to PSF knockdown-induced cell death than HT-29 cells. Our data suggest that PSF is an important regulator of cell death that plays critical roles in the survival and growth of colon cancer cells. The PSF-PPARγ axis may play a role in the control of colorectal carcinogenesis. Taken together, this study is the first to describe the effects of PSF on cell proliferation, tumor growth, and cell signaling associated with PPARγ. © 2013 Tsukahara et al. Source


Tsukahara T.,Shinshu University | Haniu H.,Shinshu University | Matsuda Y.,Nihon Pharmaceutical University
Biochemical and Biophysical Research Communications | Year: 2013

Studies on the effects of lipids on skeletal muscle cells rarely examine the effects of lysophospholipids. Through our recent studies, we identified select forms of phospholipids, such as alkyl-LPA, as ligands for the intracellular receptor peroxisome proliferator-activated receptor gamma (PPARγ). PPARγ is a nuclear hormone receptor implicated in many human diseases, including diabetes and obesity. We previously showed that alkyl-LPA is a specific agonist of PPARγ. However, the mechanism by which the alkyl-LPA-PPARγ axis affects skeletal muscle cells is poorly defined. Our objective in the present study was to determine whether alkyl-LPA and PPARγ activation promotes glucose uptake in skeletal muscle cells. Our findings indicate that PPARγ1 mRNA is more abundant than PPARγ2 mRNA in C2C12 cells. We showed that alkyl-LPA (3. μM) significantly activated PPARγ and increased intracellular glucose levels in skeletal muscle cells. We also showed that incubation of C2C12 cells with alkyl-LPA led to lipid accumulation in the cells. These findings suggest that alkyl-LPA activates PPARγ and stimulates glucose uptake in the absence of insulin in C2C12 cells. This may contribute to the plasma glucose-lowering effect in the treatment of insulin resistance. © 2013 Elsevier Inc. Source

Discover hidden collaborations