Norwegian Institute of Bioeconomy Research NIBIO As

Norway

Norwegian Institute of Bioeconomy Research NIBIO As

Norway
SEARCH FILTERS
Time filter
Source Type

Nussbaumer A.,Swiss Federal Institute of forest | Waldner P.,Swiss Federal Institute of forest | Etzold S.,Swiss Federal Institute of forest | Gessler A.,Swiss Federal Institute of forest | And 13 more authors.
Forest Ecology and Management | Year: 2016

Occurrence of mast years, i.e. the synchronous production of vast amounts of fruits or seeds, has an important impact on forest ecosystems, their functioning and their services. We investigated the mast patterns of the forest tree species common beech, common and sessile oak, Norway spruce and Scots pine in Central and Northern Europe over the last two to three decades. We analysed data from the International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests) and additional Danish, German, Flemish and Swiss datasets.Within-plot synchrony of fructification intensity in individual trees was high in beech and spruce and lower in oak species and pine. Mast frequency increased in most regions for beech, whereas the other species showed mixed or no trends. Beech, oak species and spruce showed strong mast year (MY) synchrony, but pine did not. MY synchrony between species was only significant in Bavaria, in Switzerland and between beech, oak species and spruce in Denmark. The deciduous species showed bimodal normal masting, while the conifers had switching normal masting. Oak species and the conifers supported the large seed and the accessory costs hypotheses, and beech and spruce supported the economy of scale, predator satiation and resource allocation hypotheses. © 2015 Elsevier B.V..


Jansson G.,Skogforsk | Hansen J.K.,Copenhagen University | Haapanen M.,Natural Resources Institute Luke | Kvaalen H.,Norwegian Institute of Bioeconomy Research NIBIO As | Steffenrem A.,Norwegian Institute of Bioeconomy Research NIBIO As
Scandinavian Journal of Forest Research | Year: 2016

Plantations of genetically improved forest trees are critical for economic sustainability in forestry. This review summarizes gains in objective traits and the resulting economic impact of tree breeding programmes in Scandinavia and Finland. Genetic improvement of forest trees in these countries began in the late 1940s, when the first phenotypically superior plus-trees were selected from natural environments. The main findings from this review are that (i) tree breeding can increase volume growth in the range 10–25%, and (ii) the bare land value associated with genetically improved trees gives a better return on investment and a shorter rotation period compared to the unimproved forests. As some Nordic countries are quite dependent on the forest industry, breeding programmes that have resulted in economic gains have been beneficial for society. Growth and wood quality traits are often adversely correlated, and the weighting of traits from an economic perspective could provide an index for determining maximum profit from breeding. Tree breeding faces an array of challenges in the future, such as changes in silviculture, climate, new pests and diseases, and demand for wood-based products. © 2016 Informa UK Limited, trading as Taylor & Francis Group


Ma X.,Heilongjiang Academy of Agricultural science | Ma X.,Norwegian Institute of Bioeconomy Research NIBIO As | Zhou B.,Heilongjiang Academy of Agricultural science | Budai A.,Norwegian Institute of Bioeconomy Research NIBIO As | And 5 more authors.
Communications in Soil Science and Plant Analysis | Year: 2016

Biochar is a carbon-rich solid product obtained by pyrolysis of biomass. Here, we investigated multiple biochars produced under slow pyrolysis (235–800 °C), flash carbonization, and hydrothermal carbonization (HTC), using Scanning Electron Microscope—Energy Dispersive X-ray Spectroscopy (SEM-EDX) in order to determine whether SEM-EDX can be used as a proxy to characterize biochars effectively. Morphological analysis showed that feedstock has an integrated structure compared to biochar; more pores were generated, and the size became smaller when the temperature increased. Maximum carbon content (max. C) and average carbon content (avg. C) obtained from SEM-EDX exhibited a positive relationship with pyrolysis temperature, with max. C correlating most closely with dry combustion total carbon content. The SEM-EDX O/C ratios displayed a consistent response with the highest treatment temperature (HTT). The study suggests that SEM-EDX produces highly consistent C, oxygen (O), and C/O ratios that deserve further investigation as an operational tool for characterization of biochar products. © 2016 Taylor & Francis


Arukwe A.,Norwegian University of Science and Technology | Carteny C.C.,Norwegian University of Science and Technology | Eggen T.,Norwegian Institute of Bioeconomy Research NIBIO As
Journal of Toxicology and Environmental Health - Part A: Current Issues | Year: 2016

There is limited knowledge on the toxicological, physiological, and molecular effects attributed to organophosphate (OP) compounds currently used as flame retardants or additives in consumer products. This study investigated the effects on oxidative stress and lipid peroxidation in juvenile Atlantic salmon liver and brain samples after exposure to two OP compounds, tris(2-butoxyethyl) phosphate (TBOEP) and tris(2-chloroethyl) phosphate (TCEP). In this study, groups of juvenile Atlantic salmon were exposed using a semistatic experimental protocol over a 7-d period to 3 different concentrations (0.04, 0.2, or 1 mg/L) of TBOEP and TCEP. When toxicological factors such as bioaccumulation and bioconcentration, and chemical structural characteristics and behavior, including absorption to solid materials, are considered, these concentrations represent environmentally relevant concentrations. The concentrations of the contaminants were derived from levels of their environmental occurrence. The expression of genes related to oxidative stress—glutathione peroxidase (GPx), glutathione reductase (GR), glutathione S-transferase (GST)—and to lipid peroxidation—peroxisome proliferator-activated receptors (PPAR)—were determined using quantitative (real-time) polymerase chain reaction (PCR). The presence of PPAR proteins was also investigated using immunochemical methods. Levels of thiobarbituric acid-reactive substances (TBARS) in liver were used as a measure of lipid peroxidation. Overall, our data show an increase in lipid peroxidation, and this was associated with an augmented expression of genes from the glutathione family of responses. Interestingly, PPAR expression in liver after exposure to TBOEP and TCEP was consistently decreased compared to controls, while expression in brain did not show a similar trend. The results suggest that OP contaminants may induce oxidative stress and thus production of reactive oxygen substances (ROS), and modulate lipid peroxidation processes in organisms. © 2016 Taylor & Francis.


PubMed | Norwegian University of Life Sciences and Norwegian Institute of Bioeconomy Research NIBIO As
Type: | Journal: Toxicology in vitro : an international journal published in association with BIBRA | Year: 2016

The marine toxin yessotoxin (YTX) can induce programmed cell death through both caspase-dependent and -independent pathways in various cellular systems. It appears to stimulate different forms of cellular stress causing instability among cell death mechanisms and making them overlap and cross-talk. Autophagy is one of the key pathways that can be stimulated by multiple forms of cellular stress which may determine cell survival or death. The present work evaluates a plausible link between ribotoxic stress and autophagic activity in BC3H1 cells treated with YTX. Such treatment produces massive cytoplasmic compartments as well as double-membrane vesicles termed autophagosomes which are typically observed in cells undergoing autophagy. The observed autophagosomes contain a large amount of ribosomes associated with the endoplasmic reticulum (ER). Western blotting analysis of Atg proteins and detection of the autophagic markers LC3-II and SQSTM1/p62 by flow cytometry and immunofluorescence verified autophagic activity during YTX-treatment. The present work supports the idea that autophagic activity upon YTX exposure may represent a response to ribotoxic stress.


Dalsgaard L.,Norwegian Institute of Bioeconomy Research NIBIO As | Astrup R.,Norwegian Institute of Bioeconomy Research NIBIO As | Anton-Fernandez C.,Norwegian Institute of Bioeconomy Research NIBIO As | Borgen S.K.,Norwegian Institute of Bioeconomy Research NIBIO As | And 4 more authors.
PLoS ONE | Year: 2016

Boreal forests contain 30% of the global forest carbon with the majority residing in soils. While challenging to quantify, soil carbon changes comprise a significant, and potentially increasing, part of the terrestrial carbon cycle. Thus, their estimation is important when designing forest-based climate change mitigation strategies and soil carbon change estimates are required for the reporting of greenhouse gas emissions. Organic matter decomposition varies with climate in complex nonlinear ways, rendering data aggregation nontrivial. Here, we explored the effects of temporal and spatial aggregation of climatic and litter input data on regional estimates of soil organic carbon stocks and changes for upland forests. We used the soil carbon and decomposition model Yasso07 with input from the Norwegian National Forest Inventory (11275 plots, 1960-2012). Estimates were produced at three spatial and three temporal scales. Results showed that a national level average soil carbon stock estimate varied by 10% depending on the applied spatial and temporal scale of aggregation. Higher stocks were found when applying plot-level input compared to country-level input and when long-term climate was used as compared to annual or 5-year mean values. A national level estimate for soil carbon change was similar across spatial scales, but was considerably (60-70%) lower when applying annual or 5-year mean climate compared to long-term mean climate reflecting the recent climatic changes in Norway. This was particularly evident for the forest-dominated districts in the southeastern and central parts of Norway and in the far north. We concluded that the sensitivity of model estimates to spatial aggregation will depend on the region of interest. Further, that using long-term climate averages during periods with strong climatic trends results in large differences in soil carbon estimates. The largest differences in this study were observed in central and northern regions with strongly increasing temperatures. Copyright © 2016 Dalsgaard et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


PubMed | Norwegian Institute of Bioeconomy Research NIBIO As, Natural Resources Institute Finland LUKE and Finnish Environment Institute
Type: Journal Article | Journal: PloS one | Year: 2016

Boreal forests contain 30% of the global forest carbon with the majority residing in soils. While challenging to quantify, soil carbon changes comprise a significant, and potentially increasing, part of the terrestrial carbon cycle. Thus, their estimation is important when designing forest-based climate change mitigation strategies and soil carbon change estimates are required for the reporting of greenhouse gas emissions. Organic matter decomposition varies with climate in complex nonlinear ways, rendering data aggregation nontrivial. Here, we explored the effects of temporal and spatial aggregation of climatic and litter input data on regional estimates of soil organic carbon stocks and changes for upland forests. We used the soil carbon and decomposition model Yasso07 with input from the Norwegian National Forest Inventory (11275 plots, 1960-2012). Estimates were produced at three spatial and three temporal scales. Results showed that a national level average soil carbon stock estimate varied by 10% depending on the applied spatial and temporal scale of aggregation. Higher stocks were found when applying plot-level input compared to country-level input and when long-term climate was used as compared to annual or 5-year mean values. A national level estimate for soil carbon change was similar across spatial scales, but was considerably (60-70%) lower when applying annual or 5-year mean climate compared to long-term mean climate reflecting the recent climatic changes in Norway. This was particularly evident for the forest-dominated districts in the southeastern and central parts of Norway and in the far north. We concluded that the sensitivity of model estimates to spatial aggregation will depend on the region of interest. Further, that using long-term climate averages during periods with strong climatic trends results in large differences in soil carbon estimates. The largest differences in this study were observed in central and northern regions with strongly increasing temperatures.


Gundersen V.,Norwegian Institute for Nature Research | Clarke N.,Norwegian Institute of Bioeconomy Research NIBIO As | Dramstad W.,Norwegian Institute of Bioeconomy Research NIBIO As | Fjellstad W.,Norwegian Institute of Bioeconomy Research NIBIO As
Scandinavian Journal of Forest Research | Year: 2016

Increased forest biomass production for bioenergy will have various consequences for landscape scenery, depending on both the landscape features present and the character and intensity of the silvicultural and harvesting methods used. We review forest preference research carried out in Finland, Sweden and Norway, and discuss these findings in relation to bioenergy production in boreal forest ecosystems. Some production methods and related operations incur negative reactions among the public, e.g. stump harvesting, dense plantation, soil preparation, road construction, the use of non-native species, and partly also harvest of current non-productive forests. Positive visual effects of bioenergy production tend to be linked to harvesting methods such as tending, thinning, selective logging and residue harvesting that enhance both stand and landscape openness, and visual and physical accessibility. Relatively large differences in findings between studies underline the importance of local contextual knowledge about landscape values and how people use the particular landscape where different forms of bioenergy production will occur. This scientific knowledge may be used to formulate guiding principles for visual management of boreal forest bioenergy landscapes. © 2015 Taylor & Francis.


Bele B.,Norwegian Institute of Bioeconomy Research NIBIO As | Johansen L.,Norwegian Institute of Bioeconomy Research NIBIO As | Norderhaug A.,Norwegian Institute of Bioeconomy Research NIBIO As
Acta Agriculturae Scandinavica A: Animal Sciences | Year: 2015

The objective of this pilot study was to compare resource use in a mountainous summer farming landscape between old and modern dairy cow breeds during a five-day period. The modern breed used a larger part of the landscape than the old breed, most likely due to differences in habitat patterns. The old breed group preferred semi-natural pastures, while the modern breed preferred overgrown semi-natural meadows, intermediate fen, intermediate wooded fen, and grass-rich sub-alpine birch woodland. Both breeds spent most time grazing grasses, but the modern breed showed a higher frequency of grasses and Vaccinium myrtillus in its diet, while the old breed showed a higher frequency of bushes and trees. The pilot study shows some trends supplementing and strengthening earlier results on how modern and traditional cattle breeds are differing in their impact on vegetation based on their use of space and their different diets. © 2015 Taylor & Francis.


Debella-Gilo M.,Norwegian Institute of Bioeconomy Research NIBIO As
International Journal of Remote Sensing | Year: 2016

A method of extracting bare-earth points from photogrammetric point clouds by partially using an existing lower resolution digital terrain model (DTM) is presented. The bare-earth points are extracted based on a threshold defined by local slope. The local slope is estimated from the lower resolution DTM. A gridded DTM is then interpolated from the extracted bare-earth points. Five different interpolation algorithms are implemented and evaluated to identify the most suitable interpolation method for such non-uniformly scattered data. The algorithm is tested on four test sites with varying topographic and ground cover characteristics. The results are evaluated against a reference DTM created using aerial laser scanning. The deviations of the extracted bare-earth points, and the interpolated DTM, from the reference DTM increases with increasing forest canopy density and terrain roughness. The DTM created by the method is significantly closer to the reference DTM than the lower resolution national DTM. The ANUDEM (Australian National University Digital Elevation Modelling) interpolation method is found to be the best performing interpolation method in terms of reducing the deviations and in terms of modelling the terrain realistically with minimum artefacts, although the differences among the interpolation methods are not considerably large. © 2016 Informa UK Limited, trading as Taylor & Francis Group.

Loading Norwegian Institute of Bioeconomy Research NIBIO As collaborators
Loading Norwegian Institute of Bioeconomy Research NIBIO As collaborators