NI Inc

Stockbridge, GA, United States
Stockbridge, GA, United States
SEARCH FILTERS
Time filter
Source Type

Patent
NI Inc | Date: 2016-12-08

A bond pin assembly for connecting a connection cable with a rail, comprising: a bond pin that is inserted into a through hole in the rail, said bond pin having a transition portion and a screw portion, a diameter of one end of the transition portion being larger than a diameter of the other end of the transition portion, the end of the transition portion having a smaller diameter being connected with the screw portion; a conductive sleeve that is provided between the bond pin and a wall of the through hole of the rail, and a nut that is screwed on the screw portion to fasten an end of the connection cable between the nut and a side wall of the rail. By inserting the conductive sleeve with the shape corresponding to those of the through hole and the bond pin between the through hole and the bond pin and further taking fastening measure, the structural intensity of the bond bin assembly can be increased effectively.


News Article | September 19, 2017
Site: www.businesswire.com

AUSTIN, Texas--(BUSINESS WIRE)--NI (Nasdaq: NATI), the provider of platform-based systems that enable engineers and scientists to solve the world’s greatest engineering challenges, announced today a technology collaboration with Innovari to help utility companies around the world improve system utilization, manage distributed energy resources and foster relationships between customers, local communities and regulators. Innovari’s Interactive Energy Platform (IEP) uses artificial intelligence, “big data” analytics, proprietary optimization routines and grid-edge hardware built on NI technology to deliver capacity and address grid demand. Utility companies and commercial utility customers (retail chains, grocery stores, universities and more) have benefited from deployed systems, including: Innovari’s grid-edge hardware, called Energy Agents, attaches to participant buildings to deliver important two-way communication of energy information back to the utility and balance edge-of-grid resources for an optimized grid. The agents are designed with CompactRIO Single-Board Controllers and LabVIEW software for distributed sensing and control. “We were originally attracted to NI because of the company reputation as a market leader in data acquisition technology,” said Corey Catten, chief technology officer at Innovari. “We chose CompactRIO Single-Board Controllers because we could get to market faster than with other options while maximizing the data processing capability per dollar spent. The end result is a system that not only helps utilities and their customers lower energy costs, but one that has eliminated millions of dollars’ worth of fossil fuels that otherwise would have been burned to support grid operations.” At IoT Solutions World Congress in Barcelona, Innovari and NI will participate in a session titled Improving Grid Utilization (and Cost) With Edge Control and Cloud Analytics on Thursday, October 5 at 12:40 p.m. The session explores the technical components of the complete system, details on how to achieve business benefits and an overview of a new pilot commissioned by AEP, one of the largest electric utilities in the United States. Learn more about how the NI platform helps drive the Industrial IoT at www.ni.com/iiot. Innovari has created the platform for utilities to build the grid of the future in partnership with their customers and communities. The Interactive Energy Platform™ (IEP™) uses artificial intelligence, big-data analytics, proprietary optimization routines and deep knowledge of the utility business to optimize the entire energy value chain, especially management of distributed energy resources. The IEP adds much-needed intelligence to both the generation and consumption side of the grid and behaves like a virtual power plant, securely sitting alongside other regulated utility company assets and business models. The Interactive Energy Platform is currently installed on multiple continents. Headquartered in Portland, Oregon, Innovari has offices across the U.S. as well as in India, Latin America and Turkey. Learn more at www.innovari.com. NI (ni.com) empowers engineers and scientists with a software-centric platform that incorporates modular hardware and an expansive ecosystem. This proven approach puts users firmly in control of defining what they need to accelerate their system design within test, measurement and control. NI’s solution helps build high-performance systems that exceed requirements, quickly adapt to change and ultimately improve the world. CompactRIO, LabVIEW, National Instruments, NI and ni.com are trademarks of National Instruments. Other product and company names listed are trademarks or trade names of their respective companies.


TORONTO, ONTARIO--(Marketwired - Sept. 15, 2017) - Reliant Gold Corp. ("Reliant Gold" or the "Corporation") (TSX VENTURE:RNG) is pleased to announce that it has completed a summer 2017 prospecting and surface sampling program at its East Bay Property, located in the McVicar Lake area of northwestern Ontario, Canada. The East Bay Property comprises 56 mineral claim units totaling 896 hectares (the "Property") and is located approximately 90 kilometres west of Pickle Lake, Ontario and 130 kilometres southwest of Goldcorp Inc.'s Musselwhite Gold Mine. The Property is the site of multiple historical gold occurrences including (1) the Altered Zone; (2) the North Flexure Zone; and (3) the Apple Island Zone. In addition, the Property hosts a historical copper-nickel occurrence enriched in the platinum group metals known as the Hoey Syndicate Occurrence. All four of these occurrences on the Property are registered in the Ontario Ministry of Northern Development and Mines ("MNDM"), Mineral Deposit Inventory ("MDI") database. Reliant Gold completed a three-day summer prospecting and surface sampling program (the "2017 Program") at its Property in order to evaluate its prospectivity for hosting potentially economic gold mineralization. The 2017 Program was carried out on behalf of the Corporation by geological consultant, Dr. Trevor Boyd, Ph.D., P.Geo., who is also a Qualified Person as that term is defined by National Instrument NI 43-101 ("NI 43-101"). Approximately $15,000 was allocated towards the 2017 Program to carry out a program of prospecting and surface sampling at the Property during the month of September 2017. The 2017 Program follows-up on the sampling program completed by Reliant Gold in 2016 (News Release, October 17, 2016) whereupon samples taken from gold occurrences had returned values of up to 86.461 g/t Au. The purpose of the 2017 Program was to further evaluate the historical gold showings and locate historical drill collars in the vicinity of the Apple Island Zone and the Altered Zone of the Property, and identify new targets for follow-up exploration work. The 2017 Program focused on confirming previously reported gold values along the west northwest trending fault system and finding new targets for follow-up geophysical survey and drill testing. Based upon the surface evaluation and review of the previous work, the Altered Zone remains open along strike to the east where it becomes covered by overburden while the Apple Island Zone has never been drilled and remains open for expansion in three directions. A total of 35 rock chip and grab samples were collected and then delivered by bonded courier directly to Activation Laboratories Ltd. ("Actlabs"), at their Thunder Bay, Ontario location, for assaying and testing for gold and silver. Actlabs is an ISO - 17025 accredited laboratory providing geochemistry analysis to the mining industry. A gold standard and silica blank were inserted with the batch of samples submitted for mineral analysis. Results of the assaying and testing of the samples collected at the Property are now pending, and will be announced when available. Dr. Trevor Boyd, Ph.D., P.Geo., geological consultant and a Qualified Person as defined by National Instrument NI 43-101 ("NI 43-101"), supervised the preparation of the technical information contained in this press release in compliance with NI 43-101. Reliant Gold is a junior mineral exploration company engaged in the acquisition, exploration and development of properties for the mining of precious and base metals. Reliant Gold currently holds a 100% interest in the East Bay Property, comprised of 56 mineral claim units totalling 896 hectares in the McVicar Lake area, located approximately 90 kilometres west of Pickle Lake, Ontario, and 130 kilometres southwest of Goldcorp Inc.'s Musselwhite Gold Mine. In addition, Reliant Gold holds a one-percent (1%) royalty on the net smelter returns from the future production and sale of minerals from Borden Lake South (the "NSR"), with Goldcorp Inc. having the right, at any time, to purchase fifty percent (50%) of the NSR from Reliant Gold by making a cash payment of $500,000 (plus any applicable taxes) to Reliant Gold, and a right of first refusal in favour of Goldcorp Inc. with respect to any future transfers of the NSR by Reliant. The common shares of Reliant Gold trade on the TSX Venture Exchange under the stock symbol ″RNG″. The Corporation has 23,245,169 common shares issued and outstanding. Certain statements in this press release may constitute "forward-looking" statements which involve known and unknown risks, uncertainties and other factors which may cause actual results, performance or achievements of Reliant Gold or the industry in which it operates to be materially different from any future results, performance or achievements expressed or implied by such forward-looking statements. When used in this press release, the words "estimate", "believe", "anticipate", "intend", "expect", "plan", "may", "should", "will", the negative thereof or other variations thereon or comparable terminology are intended to identify forward-looking statements. Such statements reflect the current expectations of the management of Reliant Gold with respect to future events based on currently available information and are subject to risks and uncertainties that could cause actual results, performance or achievements to differ materially from those expressed or implied by those forward-looking statements. These risks and uncertainties are detailed from time to time, including, without limitation, under the heading "Risk Factors", in Reliant Gold's prospectus and in other continuous disclosure documents that are filed by Reliant Gold from time to time with the Ontario, Alberta or British Columbia Securities Commissions which are available at www.sedar.com and to which readers of this press release are referred for additional information concerning Reliant Gold, its prospects and the risks and uncertainties relating to Reliant Gold and its prospects. New risk factors may arise from time to time and it is not possible for management to predict all of those risk factors or the extent to which any factor or combination of factors may cause actual results, performance and achievements of Reliant Gold to be materially different from those contained in forward-looking statements. Although the forward-looking statements contained in this press release are based upon what management believes to be reasonable assumptions, Reliant Gold cannot assure investors that actual results will be consistent with these forward-looking statements. Given these risks and uncertainties, investors should not place undue reliance on forward-looking statements as a prediction of actual results. The forward-looking information contained in this press release is current only as of the date hereof. Reliant Gold does not undertake or assume any obligation, except as required by law, to release publicly any revisions to these forward-looking statements to reflect events or circumstances after the date hereof or to reflect the occurrence of unanticipated events. No securities commission or regulatory authority has approved or disapproved the contents of this press release. Neither the TSX Venture Exchange nor its Regulation Services Provider (as that term is defined in the policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this release.


News Article | February 16, 2017
Site: www.marketwired.com

VANCOUVER, BRITISH COLUMBIA--(Marketwired - Feb. 16, 2017) - Scientific Metals Corp. ("STM" or the "Company") (TSX VENTURE:STM)(FRANKFURT:26X)(OTCQB:SCTFD) is pleased to announce that, subsequent to the closing of its oversubscribed $2.5 million private placement, the Company is finalizing its 2017 exploration plans and work contracts, and is preparing for mobilization of work crews to commence exploratory work. The Company plans to take full advantage of the advanced stage of exploration at Iron Creek as a result of significant work completed by previous workers. All work will be conducted on the patented lode mining claims which cover the previously identified historic estimates (see the Company's news release dated September 7, 2016). Investigating these claims significantly reduces permitting requirements for exploration programs. First, the Company plans to rehabilitate the portals leading to three underground tunnels which currently have a combined length of 1,500 feet and access the mineralized zones. The Company benefits significantly from this underground access to the mineralized zones already evident. When these underground workings have been rehabilitated, the Company plans to conduct extensive underground sampling and some underground drilling, with plans to extract a bulk sample for metallurgical testing. Second, during the course of 2017, the Company plans to conduct surface core drilling on the patented lode mining claims, targeting the known mineralized zones. The objective of this drilling will be to confirm the previously identified historic estimates of cobalt mineralization, and to explore for extensions to these zones. The Company also plans to conduct geophysical surveys over the known mineralized zones to select the most appropriate method to assist in locating drill targets in previously unexplored areas. As previously announced, these historic estimates(which do not do not use categories that conform to current CIM Definition Standards on Mineral Resources and Mineral Reserves as outlined in National Instrument 43-101, Standards of Disclosure for Mineral Projects ("NI 43-101") ), contain 1,279,000 tons grading an average of 0.59% cobalt (see the Company's news release dated September 7, 2016). The Company has the advantage of utilizing the results of the 30,000 feet of drilling that identified the historic estimates. Wayne Tisdale, CEO of the Company commented: "We look forward to confirming and expanding upon the historical workings on this project. With cobalt currently reaching new 52 week highs along with mounting demand for a safe, secure and ethical supply of cobalt, we feel it is the opportune time to aggressively explore our flagship Iron Creek Cobalt project." Tisdale added, "With the Trump administration's emphasis on providing raw materials for electric batteries sourced in the USA, there will be an ever-increasing emphasis on developing projects such as the Iron Creek Cobalt. We expect that companies such as Tesla, GM, Apple and others will be forced to disclose the ethical shortcomings in their supply chain and source safe, secure and home grown materials for their phone, car and home batteries." The Company is treating the cobalt tonnage and grade estimates above as historical estimates. The historical estimates do not use categories that conform to current CIM Definition Standards on Mineral Resources and Mineral Reserves as outlined in NI 43-101 and have not been redefined to conform to current CIM Definition Standards. The estimates were prepared in the 1980s prior to the adoption and implementation of NI 43-101. The report prepared by Noranda Exploration, Inc. does not detail cut-off grades and metal prices used to estimate the historical mineralization and used a tonnage factor of 11 cubic feet per ton. A qualified person has not, to date, classified the historical estimates as current mineral resources and the Company is not treating the historical estimates as such. More work, including, but not limited to, drilling, will be required to conform the estimates to current CIM Definition Standards. Investors are cautioned that the historical estimates do not mean or imply that economic deposits exist on the Iron Creek property. The Company has not undertaken any independent investigation of the historical estimates or other information contained in this press release nor has it independently analyzed the results of the previous exploration work in order to verify the accuracy of the information. Mr. Garry Clark, P. Geo., of Clark Exploration Consulting, is the "qualified person" as defined in NI 43-101, who has reviewed and approved the technical content in this press release. This news release contains certain "forward-looking information" within the meaning of applicable securities law. Forward-looking information is frequently characterized by words such as "plan", "expect", "project", "intend", "believe", "anticipate", "estimate" and other similar words, or statements that certain events or conditions "may" or "will" occur. . In particular, forward-looking information in this press release includes, but is not limited to, statements with respect to the Company's proposed exploration program and the expectations for the cobalt industry. Although we believe that the expectations reflected in the forward-looking information are reasonable, there can be no assurance that such expectations will prove to be correct. We cannot guarantee future results, performance or achievements. Consequently, there is no representation that the actual results achieved will be the same, in whole or in part, as those set out in the forward-looking information. Forward-looking information is based on the opinions and estimates of management at the date the statements are made, and are subject to a variety of risks and uncertainties and other factors that could cause actual events or results to differ materially from those anticipated in the forward-looking information. Some of the risks and other factors that could cause the results to differ materially from those expressed in the forward-looking information include, but are not limited to: general economic conditions in Canada and globally; industry conditions, including governmental regulation and environmental regulation; failure to obtain industry partner and other third party consents and approvals, if and when required; the availability of capital on acceptable terms; the need to obtain required approvals from regulatory authorities; stock market volatility; liabilities inherent in water disposal facility operations; competition for, among other things, skilled personnel and supplies; incorrect assessments of the value of acquisitions; geological, technical, processing and transportation problems; changes in tax laws and incentive programs; failure to realize the anticipated benefits of acquisitions and dispositions; and the other factors. Readers are cautioned that this list of risk factors should not be construed as exhaustive. The forward-looking information contained in this news release is expressly qualified by this cautionary statement. We undertake no duty to update any of the forward-looking information to conform such information to actual results or to changes in our expectations except as otherwise required by applicable securities legislation. Readers are cautioned not to place undue reliance on forward-looking information. Neither the TSX Venture Exchange nor its Regulation Services Provider (as that term is defined in the policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this release.


Patent
Shenzhen University, Xing and NI Inc | Date: 2011-01-26

A self-repairing concrete includes polyurethane polymer micro-capsules, in which the polyurethane polymer micro-capsules are mixed for a fixed function of micro-cracks. The quality mixture ratio is: concrete/ micro capsules/ water = 100:1-15:15-50. The manufacturing method is weighing a full amount of water in a container, adding polyurethane polymer micro-capsules, stirring, until fully dispersed microcapsules; pouring the water into the mixing container, adding the corresponding quality of cement; stirring; adding sand and gravel filling materials, conducting worksite watering, 1/3 volume for each time, vibrating ,and air exhausting; until the slurry filling mold.


News Article | February 27, 2017
Site: www.prnewswire.com

VANCOUVER, Feb. 27, 2017 /PRNewswire/ - Delbrook Capital Advisors Inc. ("Delbrook" or the "Concerned Shareholder") responds to the press release from Rapier Gold Inc. ("Rapier" or the "Company") dated February 25, 2017, titled "Rapier Announces Q1 Financial Highlights; Necessity for...


News Article | February 27, 2017
Site: www.businesswire.com

AUSTIN, Texas--(BUSINESS WIRE)--NI (Nasdaq: NATI), the provider of platform-based systems that enable engineers and scientists to solve the world’s greatest engineering challenges, today announced NI-RFmx 2.2, the latest version of its advanced measurement software for PXI RF test systems. When used with the second-generation PXI Vector Signal Transceiver (VST), engineers can test 4.5G and 5G RF components such as transceivers and amplifiers using a wide range of carrier aggregation schemes, even as the 5G standard is still being defined. With the second-generation VST, engineers can simultaneously generate and measure up to 32 LTE carriers, each with 20 MHz of bandwidth, and use the software to specify a variety of carrier spacing schemes. The latest release of NI-RFmx also features algorithm improvements for reduced measurement time. Engineers performing modulation quality and spectral measurements for wireless technologies such as UMTS/HSPA+ and LTE/LTE-Advanced Pro can experience EVM measurement time reductions of up to 33 percent1 by installing the latest version of the software. The measurement speed improvements in NI-RFmx are part of NI’s continued efforts to help customers lower their cost of test with faster measurements. “By adopting PXI and LabVIEW along with NI-RFmx measurement software, we have seen many customers in the semiconductor industry significantly cut test time for RF measurements, resulting in lower cost of test and faster time to market,” said Charles Schroeder, vice president of RF at NI. “The combination of excellent documentation, wealth of example code, and tight integration with PXI hardware like the second generation VST has allowed our customers to quickly and easily adopt NI-RFmx into their test systems.” In addition to the algorithm improvements, NI-RFmx also adds enhanced support for measurements such as intermodulation distortion, third order intercept, and both Y-factor and cold source noise figure measurements. These measurements integrate easily with the PXIe-5668R RF signal analyzer so engineers can easily configure high-performance PXI intermodulation distortion and noise figure test sets. Current NI-RFmx users can click here to download and start using the latest version. Since 1976, NI (www.ni.com) has made it possible for engineers and scientists to solve the world’s greatest engineering challenges with powerful platform-based systems that accelerate productivity and drive rapid innovation. Customers from a wide variety of industries – from healthcare to automotive and from consumer electronics to particle physics – use NI’s integrated hardware and software platform to improve the world we live in. LabVIEW, National Instruments, NI, and ni.com are trademarks of National Instruments. Other product and company names listed are trademarks or trade names of their respective companies. 1 Based on extensive R&D benchmarking in configurations representative of a typical use case.


Patent
NI Inc | Date: 2013-10-16

A plasticized ceramic thermal dissipation module comprises a heating electrical component (1), a cooling body (2), and a thermal conductive device (3). They are located orderly. The thermal conductive device is a substrate (e.g. a high thermal conductive circuit board or a LED module board) and the heating electrical component is arranged on the substrate, in which the cooling body is a plasticized ceramic and seamlessly integrated with the thermal conductive device together as a component (All-In-One). The present invention efficiently integrates electrical circuits (or package) board with cooling body together, may be able to simplify the assembling process during the late production stage, to decrease the thermal resistance between the two components during assembling and efficiently enhances the thermal conductive performance, furthermore, the plasticized ceramic with high thermal conductive coefficient has excellent lateral thermal conductive ability to enhance the cooling performance, and be able to integrate with different types of circuits (or package) boards together to increase products productivity and design flexibility.


Patent
NI Inc | Date: 2013-10-16

A heat dissipation module with multiple porosities is used for cooling the connected heating electrical components and comprises: a cooling body, a thermal conductive part, and a heating electrical component. The cooling body is a kind of composite ceramic with multiple porosities, and the cooling body comprises at least a cavity to accommodate the thermal conductive part. The heating electrical component is a piece of PCB with electrical conductive circuits and lighting device or a CPU.


AUSTIN, Texas--(BUSINESS WIRE)--NI (Nasdaq:NATI), the provider of platform-based systems that enable engineers and scientists to solve the world’s greatest engineering challenges, today announced the availability of the USRP-2945 quad receiver SDR device and the USRP-2944 high-performance 2x2 multiple input, multiple output (MIMO) SDR device. Both models deliver a new level of performance and capability to the USRP (Universal Software Radio Peripheral) family. These devices feature the widest frequency ranges, highest bandwidth and best RF performance in the USRP family. The USRP-2945 and USRP-2944 join the NI SDR portfolio of products, which scale from small deployable radios to 128-antenna massive MIMO systems. Engineers can use the extensive NI SDR product family to efficiently transition from design to prototyping and deployment across a wide range of wireless applications through a unified design flow. They can combine NI SDRs with LabVIEW software to rapidly develop real-time communication and wireless receiver systems, and prototype new algorithms with real-world signals through the onboard FPGA and FPGA programming tools. Additionally, engineers can efficiently incorporate NI SDR products with other NI hardware to design solutions that address the most demanding applications, benefiting from hardware flexibility combined with a unified software toolchain. Specifically designed for over-the-air signal acquisition and analysis, the USRP-2945 features a two-stage superheterodyne architecture to achieve the superior selectivity and sensitivity required for applications such as spectrum analysis and monitoring, and signals intelligence. With four receiver channels, and the capability to share local oscillators, this device also sets new industry price/performance benchmarks for direction finding applications. For wideband wireless research, the USRP-2944 is a 2x2 MIMO-capable SDR that features 160 MHz of bandwidth per channel. With a frequency range from 10 MHz to 6 GHz, this SDR works in frequencies of interest for LTE and WiFi research and exploration, covering potential new spectrum deployments. “With the future of spectrum usage and management tied to spectrum sharing, it is imperative to have cost-effective tools to enable researchers, regulators and corporations to more effectively scan, capture and analyze the spectrum to create spectrum situational awareness and respond accordingly,” said Manuel Uhm, director of marketing for Ettus Research, a National Instruments company, and chair of the board of directors for the Wireless Innovation Forum. “NI offers the broadest portfolio of SDRs and has now added a multichannel wideband transceiver and superheterodyne receiver that deliver the superior RF performance required for high-performance spectrum research.” Find more information on the USRP-2945 and USRP-2944 at www.ni.com/usrp-rio. NI SDR solutions offer unprecedented hardware and software integration that accelerate productivity and drive rapid innovation. Scaling from small to massive, NI SDR hardware and software can be used for a wide variety of applications including spectrum monitoring, signals intelligence, military communications and wireless research. The breadth of the NI SDR product family offers customers choice and the flexibility they need to help them meet their goals faster – from the LabVIEW Communications System Design Suite for programming FPGAs to open software options when paired with hardware from Ettus Research, a National Instruments company. NI SDR solutions drive productivity, shorten time to results and empower engineers and scientists with an expansive ecosystem that helps them build customer-defined solutions that leverage NI’s deep knowledge of technology trends, and large network of solution providers. Since 1976, NI (www.ni.com) has made it possible for engineers and scientists to solve the world’s greatest engineering challenges with powerful platform-based systems that accelerate productivity and drive rapid innovation. Customers from a wide variety of industries – from healthcare to automotive and from consumer electronics to particle physics – use NI’s integrated hardware and software platform to improve the world we live in. Ettus Research, LabVIEW, National Instruments, NI, ni.com and USRP are trademarks of National Instruments. Other product and company names listed are trademarks or trade names of their respective companies.

Loading NI Inc collaborators
Loading NI Inc collaborators