Time filter

Source Type

London, United Kingdom

Sherborn's Index Animalium is available online through the Smithsonian Libraries. Credit: Smithsonian Libraries From the outside, it can seem that taxonomy has a commitment issue with scientific names. They shift for reasons that seem obscure and unnecessarily wonkish to people who simply want to use names to refer to a consistent, knowable taxon such as species, genus or family. However, the relationship between nomenclature and taxonomy, as two quite separate but mutually dependent systems, is a sophisticated way of balancing what we know and what is open to further interpretation. Nomenclature is a bureaucracy that follows rules and is tied to published records and type specimens. It provides a rigid framework or skeleton for knowledge. Taxonomy, on the other hand, is a data-driven science, influenced by interpretation and resulting in concepts that are open to further test and change. To actually get the answers right, taxonomy needs to be responsive and fluid as a system of knowledge. The link between nomenclature and the published record is also the junction with the data that fuels taxonomic interpretation. Biodiversity informatics aims to solve this issue, and its founding father is Charles Davies Sherborn. His magnum opus, Index Animalium, provided the bibliographic foundation for current zoological nomenclature. In the 43 years he spent working on this extraordinary resource, he anchored our understanding of animal diversity through the published scientific record. No work has equaled it, and it is still in current and critical use. This special volume of the open-access journal ZooKeys celebrates Sherborn, his contributions, context and the future for the discipline of biodiversity informatics. The papers in this volume fall into three general areas of history, current practice and frontiers. The first section presents facets of Sherborn as a man, scientist and bibliographer, and describes the historical context for taxonomic indexing from the 19th century to today. The second section discusses existing tools and innovations for bringing legacy biodiversity information into the modern age. The final section tackles the future of biological nomenclature, including digital access, innovative publishing models and the changing tools and sociology needed for communicating taxonomy. In the late 1880s Charles Davies Sherborn recognised the need for a full index of names to the original sources that gave them legitimacy, their first publications. He set about making a complete index for names of animals, which are the largest group of described organisms (1.4 million of the current 1.8 million described species are animals). Because this work began while the very basics of nomenclatural rules were being thrashed out, the work itself affected how those rules were codified. Sherborn's monumental work, Index Animalium, comprises more than 9,000 pages in 11 volumes and about 440,000 names. This was on the scale of other hugely ambitious tasks at the time that changed the course of communication such as the Oxford English Dictionary. The error rates are astonishingly low, and it became, and it remains to date the most complete reference source for animal nomenclature. Taxonomic studies rely on Sherborn's work today. While the future for information access is one of the most exciting frontiers for our increasingly interconnected, accelerated society, biodiversity information will continue to be grounded in this seminal work. The future for biodiversity informatics is built on Sherborn's work, and is expanding to be digital, diversified and accessible. The publisher of this volume, the journal ZooKeys, is itself a pioneer in developing a more stable and accessible scientific nomenclature. Together with PhytoKeys, ZooKeys is piloting an innovative workflow with a pre-publication automated pipeline for registration of nomenclatural acts. This initiative comes from the EU FP7 project pro-iBiosphere, and in close collaboration with ZooBank (the official online registry for scientific names of animals), Zoological Record, IPNI, MycoBank and Index Fungorum, and the Global Names project. The volume was inspired by a symposium held in Sherborn's honour at the Natural History Museum (NHM), London, on the 150th year of his birth in 2011, organised by the International Commission on Zoological Nomenclature (ICZN), in collaboration with the Society for the History of Natural History (SHNH). Sherborn was a man with a vision for the future and respect for the accomplishments of the past. He would have celebrated the new tools for the ambitious goal of linking all biological information through names that are readable for both machines and humans. He would have understood the tremendous power of interconnected names for biodiversity science overall. And he would have knuckled down and got to work to make it happen. Explore further: Zoologists are no longer restricted to publish new species on paper More information: Ellinor Michel. Anchoring Biodiversity Information: From Sherborn to the 21st century and beyond, ZooKeys (2016). DOI: 10.3897/zookeys.550.7460

News Article
Site: http://phys.org/chemistry-news/

Using X-ray scattering at the ESRF facility in France to examine the blue and white feathers of the Jay, researchers from the University of Sheffield found that birds demonstrate a surprising level of control and sophistication in producing colours. Instead of simply using dyes and pigments that would fade over time, the birds use well-controlled changes to the nanostructure to create their vividly coloured feathers - which are possibly used for Jays to recognise one another. The Jay is able to pattern these different colours along an individual feather barb - the equivalent of having many different colours along a single human hair. The Jay's feather, which goes from ultra violet in colour through to blue and into white, is made of a nanostructured spongy keratin material, exactly the same kind of material human hair and fingernails are made from. The researchers found that the Jay is able to demonstrate amazing control over the size of the holes in this sponge-like structure and fix them at very particular sizes, determining the colour that we see reflected from the feather. This is because when light hits the feather the size of these holes determines how the light is scattered and therefore the colour that is reflected. As a result, larger holes mean a broader wavelength reflectance of light, which creates the colour white. Conversely, a smaller, more compact structure, results in the colour blue. If the colours were formed using pigments created from the bird's diet, the feather colour would fade over time. However, since nature has developed a way to create the colours through structural changes, any nanostructure will remain intact, explaining why birds never go grey as they age. In contrast, humans rely on pigments to colour hair. As these are not produced to the same extent as we age, we consequently go grey. The research findings are being published today in Nature Scientific Reports today (21 December 2015). Dr Andrew Parnell, from the University of Sheffield's Department of Physics and Astronomy said: "Conventional thought was that to control light using materials in this way we would need ultra precise and controlled structures with many different processing stages, but if nature can assemble this material 'on the wing', then we should be able to do it synthetically too." Dr Parnell added: "This discovery means that in the future, we could create long-lasting coloured coatings and materials synthetically. We have discovered it is the way in which it is formed and the control of this evolving nanostructure - by adjusting the size and density of the holes in the spongy like structure - that determines what colour is reflected. "Current technology cannot make colour with this level of control and precision - we still use dyes and pigments. Now we've learnt how nature accomplishes it, we can start to develop new materials such as clothes or paints using these nanostructuring approaches. It would potentially mean that if we created a red jumper using this method, it would retain its colour and never fade in the wash." Researcher Dr Daragh McLoughlin of AkzoNobel Decorative Paints Material Science Research Team added: "At AkzoNobel, the makers of Dulux paint, we aim to encourage and stimulate the innovation of more sustainable products that have eco-premium benefits. This exciting new insight may help us to find new ways of making paints that stay brighter and fresher-looking for longer, while also having a lower carbon footprint." The work used feathers selected from the extensive collection at the Natural History Museum (NHM) in London. Dr Adam Washington from the University of Sheffield added: "The research also answers the longstanding conundrum of why non-iridescent structural greens are rare in nature. This is because to create the colour green, a very complex and narrow wavelength is needed, something that is hard to produce by manipulating this tuneable spongy structures. As a result, nature's way to get round this and create the colour green - an obvious camouflage colour - is to mix the structural blue like that of the Jay with a yellow pigment that absorbs some of the blue colour." Explore further: Rainbows without pigments offer new defense against fraud

Bocak L.,NHM | Barton C.,NHM | Barton C.,Imperial College London | Crampton-Platt A.,NHM | And 5 more authors.
Systematic Entomology | Year: 2014

The species representation of public databases is growing rapidly and permits increasingly detailed phylogenetic inferences. We present a supermatrix based on all gene sequences of Coleoptera available in Genbank for two nuclear (18S and 28S rRNA) and two mitochondrial (rrnL and cox1) genes. After filtering for unique species names and the addition of ̃2000 unpublished sequences for cox1 and 18S rRNA, the resulting data matrix included 8441 species-level terminals and 6600 aligned nucleotide positions. The concatenated matrix represents the equivalent of 2.17% of the 390000 described species of Coleoptera and includes 152 beetle families. The remaining 29 families constitute small lineages with ̃250 known species in total. Taxonomic coverage remains low for several major lineages, including Buprestidae (0.16% of described species), Staphylinidae (1.03%), Tenebrionidae (0.90%) and Cerambycidae (0.58%). The current taxon sampling was strongly biased towards the Northern Hemisphere. Phylogenetic trees obtained from the supermatrix were in very good agreement with the Linnaean classification, in particular at the family level, but lower for the subfamily and lowest for the genus level. The topology supports the basal split of Derodontidae and Scirtoidea from the remaining Polyphaga, and the broad paraphyly of Cucujoidea. The data extraction pipeline and detailed tree provide a framework for placement of any new sequences, including environmental samples, into a DNA-based classification system of Coleoptera. © 2013 The Royal Entomological Society. Source

Discover hidden collaborations