Next Technology Tecnotessile s.r.l.

Prato, Italy

Next Technology Tecnotessile s.r.l.

Prato, Italy
SEARCH FILTERS
Time filter
Source Type

Fatarella E.,Next Technology Tecnotessile s.r.l. | Ciabatti I.,Next Technology Tecnotessile s.r.l. | Cortez J.,Nottingham Trent University | Cortez J.,New University of Lisbon
Enzyme and Microbial Technology | Year: 2012

A methodology to activate inert polymeric materials to enzymatic functionalisation is described herein. Plasma irradiation can be used to graft compounds containing a moiety that is reactive towards an enzyme of interest. Subsequently, such enzyme can be used to either postgraft functional compounds or cross-link the polymeric materials. Argon plasma was utilised to graft 2-aminoethyl methacrylate onto cotton and wool fibres, introducing surface alkylamine groups to impart reactivity towards transglutaminase and tyrosinase. The efficiency of plasma grafting was verified by ATR-FTIR. Enzyme postgrafting of fluorescent peptides coupled with confocal microscopy was used to demonstrate transglutaminase activity towards cotton, a material typically inert to this enzyme. The grafting of alkylamines onto wool resulted in additional cross-linking by both enzymes, leading to significantly increased yarn breaking load and elongation at break. This technology permits the activation of inert materials towards enzymatic postgrafting, with applications in fields as diverse as textiles and biomaterials. © 2012 Elsevier Inc.


Fatarella E.,Next Technology Tecnotessile s.r.l. | Ciabatti I.,Next Technology Tecnotessile s.r.l. | Cortez J.,Nottingham Trent University
Enzyme and Microbial Technology | Year: 2010

Plasma generated by non-polymerizing gases (oxygen, air and nitrogen) and electron-beam irradiation under different atmospheres were studied as possible pretreatments to an enzymatic process with transglutaminase (TGase). The aim was to improve the accessibility of target groups of TGase present in wool fabrics to the enzyme, thanks to chemical etching or the removal of the epicuticle layer by physical etching, thus leading to increased formation of cross-links or incorporation of primary amine compounds. For the plasma treatment, we found that oxygen promotes the cleavage of disulphide bonds by oxidation of sulphur species: a reduction of oxygen content in the gas plasma induced a reduction in oxidation yield, as shown by FTIR measurements. Conversely, nitrogen promoted a chemical etching reaction. The most significant effects were observed at high treatment power (400 W), where both cleavage of polymer chains and removal of the epicuticle layer were promoted. Air plasma at high power was the most promising pretreatment to the enzymatic process. The modifications induced a good penetration of the enzyme into the fibre core and no significant changes in enzyme activity were observed in contact with the plasma-treated fabrics. In contrast, by increasing the energy of the electrons in E-beam treatments no significant superficial modifications were observed. In fact, they promoted the cleavage of high-energy bond, such as S-S linkage, by enhancing depolymerization reaction. © 2009 Elsevier Inc. All rights reserved.


PubMed | Next Technology Tecnotessile s.r.l.
Type: Evaluation Studies | Journal: Enzyme and microbial technology | Year: 2012

A methodology to activate inert polymeric materials to enzymatic functionalisation is described herein. Plasma irradiation can be used to graft compounds containing a moiety that is reactive towards an enzyme of interest. Subsequently, such enzyme can be used to either postgraft functional compounds or cross-link the polymeric materials. Argon plasma was utilised to graft 2-aminoethyl methacrylate onto cotton and wool fibres, introducing surface alkylamine groups to impart reactivity towards transglutaminase and tyrosinase. The efficiency of plasma grafting was verified by ATR-FTIR. Enzyme postgrafting of fluorescent peptides coupled with confocal microscopy was used to demonstrate transglutaminase activity towards cotton, a material typically inert to this enzyme. The grafting of alkylamines onto wool resulted in additional cross-linking by both enzymes, leading to significantly increased yarn breaking load and elongation at break. This technology permits the activation of inert materials towards enzymatic postgrafting, with applications in fields as diverse as textiles and biomaterials.

Loading Next Technology Tecnotessile s.r.l. collaborators
Loading Next Technology Tecnotessile s.r.l. collaborators