Time filter

Source Type

Chang P.-K.,National Cheng Kung University | Hsieh P.-T.,National Cheng Kung University | Lu C.-H.,NexPower Technology Corporation | Yeh C.-H.,NexPower Technology Corporation | Houng M.-P.,National Cheng Kung University
Solar Energy Materials and Solar Cells | Year: 2011

A structure is developed to help improve the TCO/p contact and efficiency of the solar cell. A pin amorphous silicon (a-Si:H) solar cell with high-conversion efficiency is presented via use of a double p-type window layer composed of microcrystalline silicon and amorphous silicon carbide. The best efficiency is obtained for a glass/textured TCO/p-μc-Si:H/p-a-SiC:H/buffer/i- a-Si:H/n-μc-Si:H/GZO/Ag structure. Using a SnO 2/GZO bi-layer and a p-type hydrogenated microcrystalline silicon (p-μc-Si:H) layer between the TCO/p-a-SiC:H interface improves the photovoltaic performance due to reduction of the surface potential barrier. Layer thickness, B 2H 6/SiH 4 ratio and hydrogen dilution ratio of the p-μc-Si:H layer are studied experimentally. It is clearly shown that the double window layer can improve solar cell efficiency. An initial conversion efficiency of 10.63% is achieved for the a-Si:H solar cell. © 2011 Elsevier B.V.


Lai K.-C.,National Cheng Kung University | Liu C.-C.,Nan Jeon University of Science and Technology | Lu C.-h.,NexPower Technology Corporation | Yeh C.-H.,NexPower Technology Corporation | Houng M.-P.,National Cheng Kung University
Solar Energy Materials and Solar Cells | Year: 2010

Gallium-doped zinc oxide (ZnO:Ga) thin films are of interest to the semiconductor industry as transparent conductive surfaces and as transparent contact electrode layers for applications such as microcrystalline silicon (μc-Si) thin film solar cells. Physical vapor deposition (PVD) via sputtering is commonly used to produce thin films such as ZnO:Ga, but film quality and characteristics depend significantly on the PVD processing parameters. For use as contact electrode layers in μc-Si thin film solar cells, this study investigates some of the important changes of ZnO:Ga thin films that result from varying DC magnetron PVD sputtering parameters, specifically the working power (500, 1200, and 1900 w), process gas (Ar, Ar/O2=50/0.2 sccm) and working pressure (0.74 and 1.06 Pa). Process temperature is held at 200 °C because thin film solar cells are damaged above 200 °C. Adding O2 to the Ar carrier gas improved transmittance but the resistivity suffered. However, high-sputtering power solved the resistivity problem. Additionally, the effects of the produced ZnO:Ga material when applied as multi-layer front and back layer electrodes to μc-Si thin film solar cells is evaluated in terms of open-circuit voltage (ΔVOC), short-circuit current density (ΔJSC), fill factor (ΔFF) and efficiency (Δη) of the cells. © 2009 Elsevier B.V. All rights reserved.


Patent
Nexpower Technology Corporation | Date: 2013-03-19

The present invention discloses a thin-film solar cell and the manufacturing method thereof. A thin-film solar cell includes a substrate, a P-type layer, an interface layer, an I-type amorphous silicon layer, an I-type absorbing layer, an N-type layer and an electrode layer. The P-type is disposed on the substrate. The interface layer is disposed on the P-type layer. The I-type amorphous silicon layer is disposed on the interface layer. The I-type absorbing layer is disposed on the I-type amorphous silicon layer. The N-type layer is disposed on the I-type absorbing layer. The electrode layer is disposed on the N-type layer. Wherein, the I-type absorbing layer is thicker than 20% the I-type amorphous silicon layer, and the interface layer is thinner than 20% of the I-type amorphous silicon layer.


Patent
NEXPOWER TECHNOLOGY Corporation | Date: 2010-07-09

The present invention discloses a laser-scribing method to make a bifacial thin film solar cell and the structure thereof. The laser-scribing method is to form scribing patterns that penetrate different structural layers during the process of forming various structural layers. After the laser-scribing, the top solar cell unit is attached with the bottom solar cell unit by various combining steps to form a solar cell assembly. The solar cell assembly can receive light from both sides via the absorber layers of both of the top solar cell unit and the bottom solar cell unit. The solar cell assembly has an increased output efficiency and a greater power density and the cost of the manufacturing is therefore reduced.


Patent
Nexpower Technology Corporation | Date: 2014-07-30

A high transmittance thin film solar panel includes a transparent substrate, a front electrode layer, a light absorption layer and a rear electrode layer. The light absorption layer is formed with opening patterns with the same width at positions aligned correspondingly to form at least one first opening trench, a plurality of second opening trenches with continuously and periodically sinusoidal-wave shape, and a plurality of third opening trenches parallel to, interlace with or superpose the second opening trenches, and extend in a direction orthogonal to the direction of the first opening trench. The high transmittance thin film solar panel of the present invention is mainly used for green buildings. The opening trenches of the high transmittance thin film solar panel are formed in a manner of curve shape by oscillating laser head, can enhance the transmittance by more than about 3% in comparison with the conventional one.


Patent
Nexpower Technology Corporation | Date: 2010-11-26

A thin-film solar cell and a manufacturing method thereof are disclosed. The method of manufacturing the thin-film solar cell includes the steps of providing a substrate; forming a diffusion barrier layer on the substrate; forming a back electrode layer on the diffusion barrier layer; forming a precursor layer on the back electrode layer, and the precursor layer including at least Cu, In and Ga; providing an alkali layer on an upper surface of the precursor layer, and the alkali layer being formed of Li, Na, K, Rb, Cs, or an alkali metal compound; providing a selenization process for the precursor layer and the alkali layer to form an absorber layer, such that an atomic percentage concentration of the alkali metal in the absorber layer is ranged between 0.01%10%; forming at least a buffer layer on the absorber layer; and forming at least a front electrode layer on the buffer layer.


Patent
Nexpower Technology Corporation | Date: 2013-06-06

A colored solar cell device includes: a solar cell module; a transparent adhesive layer; and a color filter attached to the solar cell module through the transparent adhesive layer and including a transparent filter substrate and a wavelength-selective reflecting film that is formed on the transparent filter substrate, that contacts the transparent adhesive layer and that includes at least one first dielectric layer made from a material selected from the group consisting of TiO_(2), Nb_(2)O_(3), ZnS, and ZrO_(2). The first dielectric layer has a thickness ranging from 1 nm to 300 nm. The transparent filter substrate has a refractive index n_(0). The first dielectric layer has a refractive index n_(1 )greater than n_(0).


Patent
Nexpower Technology Corporation | Date: 2011-12-20

A manufacturing method of thin film solar cells and thin film solar cells thereof. The thin film solar cells comprise a substrate, an amorphous silicon layer, a first conductive layer, a stacked I-layer, a second conductive layer and a back contact layer. The amorphous silicon layer is on the substrate. The first conductive layer is on the amorphous silicon layer. The stacked I-layer is on the first conductive layer; the stacked I-layer from bottom to top is sequentially stacked by three different deposition rate I-layers: a first I-layer, a second I-layer and a third I-layer. Compared with the first and the third I-layer, the second I-layer has deposition rate higher than those of the other two I-layers. The second conductive layer is on the stacked I-layer. The back contact layer is on the second conductive layer for getting electric energy.


Patent
Nexpower Technology Corporation | Date: 2011-07-21

A thin film silicon solar cell and a manufacturing method thereof. The thin film silicon solar cell comprises a glass substrate, a first electrode layer, a light absorbing layer, a second electrode layer, and a metal electrode layer sequentially stacked on top of one another. The second electrode layer has a texture surface and concavities formed on the texture surface, and each of the concavities has a width falling within a range of 100 nm-1600 nm and a depth less than 800 nm.


Patent
NEXPOWER TECHNOLOGY Corporation | Date: 2011-01-21

A thin film solar cell structure comprises a substrate, a front electrode layer, an absorber layer, and a back electrode layer stacked on one another sequentially. A first isolation groove goes through the back electrode layer and the absorber layer, and a second isolation groove is disposed concavely in the front electrode layer and filled with an insulative material. A conductive groove is disposed concavely in the absorber layer and filled with a conductive material. Therefore, the front electrode layer is electrically conducted to the back electrode layer via the conductive material. By means of a method of patterning the first isolation groove, second isolation groove and conductive groove, a succinct design of the thin film solar cell structure can be achieved.

Loading NexPower Technology Corporation collaborators
Loading NexPower Technology Corporation collaborators