Nexcelom Bioscience LLC

Head of Westport, MA, United States

Nexcelom Bioscience LLC

Head of Westport, MA, United States

Time filter

Source Type

News Article | November 28, 2016
Site: www.newsmaker.com.au

In terms of revenue, the global hemoglobinopathy market is projected to register a healthy CAGR of 8.3% over the forecast period owing to various factors, on which Persistence Market Research offers detailed insights. Most health insurance companies, including government programs in the U.S. and Europe provide insurance coverage for hemoglobinopathy therapy under the CPT code. This creates a favorable environment for the growth of the global hemoglobinopathy market. Various government initiatives are being carried out for detection and management of hemoglobinopathy in high disease prevalence regions across the globe, giving a fillip to the global hemoglobinopathy market. Advancements in diagnosis techniques have led to the development of new tests that have enabled clinicians to provide effective diagnosis and therapeutic assistance to patients. Rising awareness about these disorders coupled with various public and private initiatives is also fueling the growth of the global hemoglobinopathy market in the regions with a high prevalence of sickle cell anemia and thalassemia. Lack of awareness regarding hemoglobinopathy disorders among the populace especially in underdeveloped countries is a major factor hampering growth of the global hemoglobinopathy market. The lack of a permanent cure for hemoglobinopathy disorder is also one of the restraints affecting the global hemoglobinopathy market. Global hemoglobinopathy market is segmented based on indication type, test type, end users, and region. Based on indication, the market is segmented into sickle cell disease, alpha thalassemia, and beta thalassemia. Beta thalassemia segment is expected to register a significant CAGR of 8.7% during the forecast period. Sickle cell disease segment is anticipated to grow with a CAGR of 8.3% over the forecast period. The market has been segmented based on major types of diagnostic tests such as red blood cell (RBC) count test, genetic testing, hemoglobin by high performance liquid chromatography (HPLC) test, hemoglobin isoelectric (Hb IEF) focusing, hemoglobin electrophoresis (Hb ELP) test, and hemoglobin solubility test. The genetic testing segment is expected to expand at the highest CAGR of 9.2% over the forecast period due to increasing adoption of preventive measures such as genetic counseling and testing. Increasing popularity of prenatal and premarital genetic screening make these tests an attractive opportunity for market players. Based on end users, the market has been segmented into hospitals, diagnostic laboratories, and clinics. The diagnostic laboratories segment is anticipated to account for the highest market share over the forecast period, registering a CAGR of 8.9% due to availability of dedicated equipment, reagents, and trained technicians required to perform rather complex diagnostic procedures like genetic testing, Hb HPLC, and isoelectric focusing. Global hemoglobinopathy market has been segmented into five major regions: North America, Latin America, Europe, Asia Pacific (APAC), and Middle East & Africa (MEA). North America and Europe are expected to dominate the global hemoglobinopathy market with maximum market share in 2016. North America and Europe collectively have been expected to account for more than 50% of the total global hemoglobinopathy market share in terms of value in 2016. Among emerging markets, Asia Pacific is estimated to exhibit the highest CAGR of 9.3% over the forecast period, due to an increase in the diagnosis rate. Some key players in the global hemoglobinopathy market identified in the report include Abbott Diagnostics, Bio-Rad Laboratories Inc., Danaher Corporation, Mindray Medical International Ltd., Nexcelom Bioscience LLC., Nihon Kohden Corporation, PerkinElmer Inc., Siemens Healthineers, and Sysmex Corporation. The individual strategies of these companies in terms of increasing focus on rare diseases, initiatives to increase disease awareness, and enhancing distribution base have been discussed. The report concludes with strategic recommendations for players already present in the market and new players planning to enter the global hemoglobinopathy market, which could help them in the long run.


Qiu H.,Zhengzhou University | Qiu H.,University of North Carolina at Chapel Hill | Jackson A.L.,University of North Carolina at Chapel Hill | Kilgore J.E.,University of North Carolina at Chapel Hill | And 6 more authors.
Oncotarget | Year: 2015

Amplification and overexpression of c-Myc is commonly seen in human ovarian cancers, and this could be a potentially novel therapeutic target for this disease. JQ1, a selective small-molecule BET bromodomain (BRDs) inhibitor, has been found to suppress tumor progression in several cancer cell types. Using ovarian cancer cell lines, a transgenic mouse model, and primary cell cultures from human ovarian cancer tissues, we demonstrated that JQ1 significantly suppressed cellular proliferation and induced cell cycle arrest and apoptosis in ovarian cancer cells and mouse model via targeting c-Myc. In addition, JQ1 had multiple influences on cancer metabolism, particularly in the aerobic glycolysis pathway. JQ1 reduced both the activity and phosphorylation of LDHA, inhibited lactate production, and decreased the energy supply to ovarian cancer cell lines and tumors. Taken together, our findings suggest that JQ1 is an efficacious anti-tumor agent in ovarian cancer that is associated with cell cycle arrest, induction of apoptosis and alterations of metabolism.


Chan L.L.,D-Tech, LLC | Zhong X.,Boston University | Pirani A.,Nexcelom Bioscience LLC | Lin B.,Nexcelom Bioscience LLC
Journal of Immunological Methods | Year: 2012

Cell proliferation is an important assay for pharmaceutical and biomedical research to test the effects of a variety of treatments on cultured primary cells or cell lines. For immunological studies, the ability to perform rapid cell proliferation analysis allows the identification of potential biological reagents for inducing or inhibiting immune cell proliferation. Current cell proliferation analysis methods employ flow cytometry for fluorescence detection of CFSE-labeled cells. However, conventional flow cytometers require a considerable amount of cells per sample, which becomes an issue for kinetic measurements with rare cell population due to the lack of samples for flow cytometric analyses at multiple time points during proliferation period. Here we report the development of a novel cell proliferation kinetic detection method for low cell concentration samples using the new Cellometer Vision system. Since the Cellometer system requires only 20μl of sample, cell proliferation can be measured at multiple time points over the entire culturing period, whereas typically, flow cytometry is only performed at the end of the proliferation period. To validate the detection method, B1 and B2 B cells were treated with a B cell mitogen for 6. days, and proliferation was measured using Cellometer on day 1, 3, 5, and 6. To demonstrate the capability of the system, B1 B cells were treated with a panel of TLR agonists (Pam3Cys, PolyIC, CLO97, and CpG) for 7. days, and proliferation was measured on day 2, 4, 6, and 7. Cellometer image-based cytometry (IBC) was able to obtain proliferation results on each day with the last time point comparable to flow cytometry. This novel method allows for kinetic measurements of the rare cell samples such as B1 B cell, which has the potential to revolutionize kinetic analysis of cell proliferation. © 2012 Elsevier B.V.


Chan L.L.,D-Tech, LLC | Zhong X.,Boston University | Qiu J.,D-Tech, LLC | Li P.Y.,D-Tech, LLC | Lin B.,Nexcelom Bioscience LLC
Cytometry Part A | Year: 2011

Cell phenotyping and cell cycle analysis are two commonly used assays in both clinical diagnosis and biomedical research. Cell phenotyping by identifying different biomarkers is essential for the diagnosis of hematologic malignancy, sub-classifying diseases, monitoring response to treatment, predicting prognosis, detecting rare cell populations and residual malignant cells. Cell cycle analysis distinguishes cells in different phases of cell cycle and is often used to determine the cellular response to drugs and biological stimulations. These assays have been traditionally carried out by sensitive fluorescence detection methods such as flow cytometry and laser scanning cytometry for fluorescence-based cell population analysis. However, these instruments remain relatively expensive, large in size, and require a considerable amount of maintenance, which may not be feasible for smaller research groups that do not have access to these equipments or field clinics that require quick diagnostic results on site. Recently, a small portable imaging cytometry system (Cellometer Vision) has been developed by Nexcelom Bioscience LLC (Lawrence, MA) for automated cell concentration and viability measurement using bright-field and fluorescent imaging methods. Here we report new applications of the Cellometer imaging cytometry for fluorescence-based cell population analysis and compared them with conventional flow cytometry. Cell population analysis assays such as immunophenotyping, cell cycle, and mitochondrial membrane potential detection methods have not yet been reported for the Cellometer Vision system. Using this imaging cytometry method for fluorescence-based assays that are typically done by flow cytometry offers a quick, simple, and inexpensive alternative method for biomedical research, which may be beneficial for smaller research laboratories and clinics. © 2011 International Society for Advancement of Cytometry.


Patent
Nexcelom Bioscience Llc | Date: 2013-10-09

The invention generally relates to analyzing yeast viability and reproduction rate of yeasts. More particularly, the invention relates to efficient and effective methods and compositions for accessing and measuring budding percentages, viability and concentration of yeast cells.


Patent
Nexcelom Bioscience Llc | Date: 2015-07-02

The invention generally relates to analytical and monitoring systems useful for analyzing and measuring cells and biological samples. More particularly, the invention provides systems and methods for internal calibration and focus reference for cytometry imaging.


Patent
Nexcelom Bioscience Llc | Date: 2011-06-06

The invention generally relates to analyzing yeast viability. More particularly, the invention relates to efficient and effective methods and compositions for accessing and measuring viability and concentration of yeast cells.


Patent
Nexcelom Bioscience Llc | Date: 2014-08-06

The present invention generally relates to systems and methods for counting biomolecules or cells. In certain embodiments, the invention provides a cell counting or biomolecule counting system including: a covered chamber having a known height and configured to hold a suspension of biomolecules or cells in a sample; at least one fluorescent light source connected to at least one fluorescent light beam narrowing device; a bright-field light source connected to a bright-field light beam narrowing device; a microscope objective; a detection device; a fluorescent filter assembly to allow only excitation light to illuminate the sample and allow only emission light from the sample to be imaged by the detection device; and a movable light shutter to block bright-field light during fluorescent detection.


Patent
Nexcelom Bioscience Llc | Date: 2014-12-31

The invention generally relates to analytical and monitoring systems useful for analyzing and measuring cells and biological sample. More particularly, the invention relates to a unique cell counting chamber, e.g., a thin gap fluidic cell chamber for both bright field and fluorescent imaging of bacteria or parasites, and methods for making the same.


Patent
Nexcelom Bioscience LLC | Date: 2011-10-20

The invention generally relates to analytical and monitoring systems useful for analyzing and measuring cells and biological samples. More particularly, the invention provides systems and methods for internal calibration and focus reference for cytometry imaging.

Loading Nexcelom Bioscience LLC collaborators
Loading Nexcelom Bioscience LLC collaborators