Time filter

Source Type

Denver, CO, United States

Sweeney L.M.,Sapphire Group Inc. | Kester J.E.,NewFields LLC | Kirman C.R.,Sapphire Group Inc. | Gentry P.R.,Environmental Inc. | And 3 more authors.
Critical Reviews in Toxicology | Year: 2015

Potential chronic health risks for children and prospective parents exposed to ethylbenzene were evaluated in response to the Voluntary Children's Chemical Evaluation Program. Ethylbenzene exposure was found to be predominately via inhalation with recent data demonstrating continuing decreases in releases and both outdoor and indoor concentrations over the past several decades. The proportion of ethylbenzene in ambient air that is attributable to the ethylbenzene/styrene chain of commerce appears to be relatively very small, less than 0.1% based on recent relative emission estimates. Toxicity reference values were derived from the available data, with physiologically based pharmacokinetic models and benchmark dose methods used to assess dose-response relationships. An inhalation non-cancer reference concentration or RfC of 0.3 parts per million (ppm) was derived based on ototoxicity. Similarly, an oral non-cancer reference dose or RfD of 0.5 mg/kg body weight/day was derived based on liver effects. For the cancer assessment, emphasis was placed upon mode of action information. Three of four rodent tumor types were determined not to be relevant to human health. A cancer reference value of 0.48 ppm was derived based on mouse lung tumors. The risk characterization for ethylbenzene indicated that even the most highly exposed children and prospective parents are not at risk for non-cancer or cancer effects of ethylbenzene. © 2015 Informa Healthcare USA, Inc.

Winkler M.S.,Swiss Tropical and Public Health Institute | Winkler M.S.,University of Basel | Divall M.J.,SHAPE Consulting Ltd | Krieger G.R.,NewFields LLC | And 7 more authors.
Environmental Impact Assessment Review | Year: 2012

The quantitative assessment of health impacts has been identified as a crucial feature for realising the full potential of health impact assessment (HIA). In settings where demographic and health data are notoriously scarce, but there is a broad range of ascertainable ecological, environmental, epidemiological and socioeconomic information, a diverse toolkit of data collection strategies becomes relevant for the mainly small-area impacts of interest. We present a modular, cross-sectional baseline health survey study design, which has been developed for HIA of industrial development projects in the humid tropics. The modular nature of our toolkit allows our methodology to be readily adapted to the prevailing eco-epidemiological characteristics of a given project setting. Central to our design is a broad set of key performance indicators, covering a multiplicity of health outcomes and determinants at different levels and scales. We present experience and key findings from our modular baseline health survey methodology employed in 14 selected sentinel sites within an iron ore mining project in the Republic of Guinea. We argue that our methodology is a generic example of rapid evidence assembly in difficult-to-reach localities, where improvement of the predictive validity of the assessment and establishment of a benchmark for longitudinal monitoring of project impacts and mitigation efforts is needed. © 2011 Elsevier Inc.

De Sherbinin A.,Columbia University | Castro M.,Harvard University | Gemenne F.,Institute for Sustainable Development and International Relations IDDRI | Cernea M.M.,Brookings Institution | And 15 more authors.
Science | Year: 2011

Mitigation and adaptation projects will lead to increased population displacement, calling for new research and attention to past lessons.

Quast K.W.,Amec Foster Wheeler | Levine A.D.,National Science Foundation | Kester J.E.,NewFields LLC | Fordham C.L.,Terra Technologies Environmental Services LLC
Environmental Monitoring and Assessment | Year: 2016

Tertiary-butyl alcohol (TBA), a high-production volume (HPV) chemical, was sporadically detected in groundwater and coalbed methane (CBM) wells in southeastern Colorado’s hydrocarbon-rich Raton Basin. TBA concentrations in shallow water wells averaged 75.1 μg/L, while detections in deeper CBM wells averaged 14.4 μg/L. The detection of TBA prompted a forensic investigation to try to identify potential sources. Historic and recent data were reviewed to determine if there was a discernable pattern of TBA occurrence. Supplemental samples from domestic water wells, monitor wells, CBM wells, surface waters, and hydraulic fracturing (HF) fluids were analyzed for TBA in conjunction with methyl tertiary-butyl ether (MTBE) and ethyl tertiary-butyl ether (ETBE), proxies for evidence of contamination from reformulated gasoline or associated oxygenates. Exploratory microbiological sampling was conducted to determine if methanotrophic organisms co-occurred with TBA in individual wells. Meaningful comparisons of historic TBA data were limited due to widely varying reporting limits. Mapping of TBA occurrence did not reveal any spatial patterns or physical associations with CBM operations or contamination plumes. Additionally, TBA was not detected in HF fluids or surface water samples. Given the widespread use of TBA in industrial and consumer products, including water well completion materials, it is likely that multiple diffuse sources exist. Exploratory data on stable isotopes, dissolved gases, and microbial profiling provide preliminary evidence that methanotrophic activity may be producing TBA from naturally occurring isobutane. Reported TBA concentrations were significantly below a conservative risk-based drinking water screening level of 8000 μg/L derived from animal toxicity data. © 2016, Springer International Publishing Switzerland.

Winkler M.S.,Swiss Tropical and Public Health Institute | Winkler M.S.,University of Basel | Krieger G.R.,NewFields LLC | Divall M.J.,SHAPE Consulting Ltd | And 3 more authors.
Geospatial Health | Year: 2012

Development and implementation of large-scale industrial projects in complex eco-epidemiological settings typically require combined environmental, social and health impact assessments. We present a generic, spatio-temporal health impact assessment (HIA) visualization, which can be readily adapted to specific projects and key stakeholders, including poorly literate communities that might be affected by consequences of a project. We illustrate how the occurrence of a variety of complex events can be utilized for stakeholder communication, awareness creation, interactive learning as well as formulating HIA research and implementation questions. Methodological features are highlighted in the context of an iron ore development in a rural part of Africa.

Discover hidden collaborations