Time filter

Source Type

Varkonyi-Gasic E.,New Zealand Institute for Plant and Food Research
Methods in molecular biology (Clifton, N.J.)

Plant microRNAs (miRNAs) are a class of endogenous small RNAs that are essential for plant development and survival. They arise from larger precursor RNAs with a characteristic hairpin structure and regulate gene activity by targeting mRNA transcripts for cleavage or translational repression. Efficient and reliable detection and quantification of miRNA expression has become an essential step in understanding their specific roles. The expression levels of miRNAs can vary dramatically between samples and they often escape detection by conventional technologies such as cloning, northern hybridization and microarray analysis. The stem-loop RT-PCR method described here is designed to detect and quantify mature miRNAs in a fast, specific, accurate and reliable manner. First, a miRNA-specific stem-loop RT primer is hybridized to the miRNA and then reverse transcribed. Next, the RT product is amplified and monitored in real time using a miRNA-specific forward primer and the universal reverse primer. This method enables miRNA expression profiling from as little as 10 pg of total RNA and is suitable for high-throughput miRNA expression analysis. Source

Mohan S.,New Zealand Institute for Plant and Food Research
TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik

Over-expression of the potato Gibberellin Stimulated-Like 2 ( GSL2 ) gene in transgenic potato confers resistance to blackleg disease incited by Pectobacterium atrosepticum and confirms a role for GSL2 in plant defence. The Gibberellin Stimulated-Like 2 (GSL2) gene (also known as Snakin 2) encodes a cysteine-rich, low-molecular weight antimicrobial peptide produced in potato plants. This protein is thought to play important roles in the innate defence against invading microbes. Over-expression of the GSL2 gene in potato (cultivar Iwa) was achieved using Agrobacterium-mediated gene transfer of a plant expression vector with the potato GSL2 gene under the regulatory control elements of the potato light-inducible Lhca3 gene. The resulting plants were confirmed as being transgenic by PCR, and subsequently analysed for transcriptional expression of the Lhca3-GSL2-Lhca3 chimeric potato gene. Quantitative RT-PCR analysis demonstrated that the majority of the transgenic potato lines over-expressed the GSL2 gene at the mRNA level. Based on qRT-PCR results and evaluation of phenotypic appearance, eight lines were selected for further characterisation and evaluated in bioassays for resistance to Pectobacterium atrosepticum (formerly Erwinia carotovora subsp. atroseptica), the causal agent of blackleg in potato. Three independent pathogenicity bioassays showed that transgenic lines with significantly increased transcriptional expression of the GSL2 gene exhibit resistance to blackleg disease. This establishes a functional role for GSL2 in plant defence against pathogens in potato. Source

Baldwin S.,New Zealand Institute for Plant and Food Research
TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik

We present the first evidence for a QTL conditioning an adaptive trait in bulb onion, and the first linkage and population genetics analyses of candidate genes involved in photoperiod and vernalization physiology. Economic production of bulb onion (Allium cepa L.) requires adaptation to photoperiod and temperature such that a bulb is formed in the first year and a flowering umbel in the second. 'Bolting', or premature flowering before bulb maturation, is an undesirable trait strongly selected against by breeders during adaptation of germplasm. To identify genome regions associated with adaptive traits we conducted linkage mapping and population genetic analyses of candidate genes, and QTL analysis of bolting using a low-density linkage map. We performed tagged amplicon sequencing of ten candidate genes, including the FT-like gene family, in eight diverse populations to identify polymorphisms and seek evidence of differentiation. Low nucleotide diversity and negative estimates of Tajima's D were observed for most genes, consistent with purifying selection. Significant population differentiation was observed only in AcFT2 and AcSOC1. Selective genotyping in a large 'Nasik Red × CUDH2150' F2 family revealed genome regions on chromosomes 1, 3 and 6 associated (LOD > 3) with bolting. Validation genotyping of two F2 families grown in two environments confirmed that a QTL on chromosome 1, which we designate AcBlt1, consistently conditions bolting susceptibility in this cross. The chromosome 3 region, which coincides with a functionally characterised acid invertase, was not associated with bolting in other environments, but showed significant association with bulb sucrose content in this and other mapping pedigrees. These putative QTL and candidate genes were placed on the onion map, enabling future comparative studies of adaptive traits. Source

New Zealand Institute for Plant and Food Research | Date: 2015-02-26

A new and distinct apricot variety is described. The variety results from selection among a population of seedlings derived from controlled crossing of the varieties Bhart (not patented), marketed as Orangered and Late Moorpark (not patented). The new variety, StB14/15, is distinguished from others by medium sized fruit with a deep red overcolour when mature accompanied by mid orange coloured firm flesh and low ethylene characteristics. Fruit of StB14/15 matures in early to late February in Otago, New Zealand.

Janssen B.J.,New Zealand Institute for Plant and Food Research | Snowden K.C.,New Zealand Institute for Plant and Food Research
Frontiers in Plant Science

The signaling molecules strigolactone (SL and karrikin are involved in seed germination, development of axillary meristems, senescence of leaves, and interactions with arbuscular mycorrhizal fungi. The signal transduction pathways for both SLs and karrikins require the same F-box protein (MAX2 and closely related α/β hydrolase fold proteins (DAD2 and KAI2. The crystal structure of DAD2 has been solved revealing an α/β hydrolase fold protein with an internal cavity capable of accommodating SLs. DAD2 responds to the SL analog GR24 by changing conformation and binding to MAX2 in a GR24 concentration-dependent manner. DAD2 can also catalyze hydrolysis of GR24. Structure activity relationships of analogs indicate that the butenolide ring common to both SLs and karrikins is essential for biological activity, but the remainder of the molecules can be significantly modified without loss of activity. The combination of data from the study of DAD2, KAI2, and chemical analogs of SLs and karrikins suggests a model for binding that requires nucleophilic attack by the active site serine of the hydrolase at the carbonyl atom of the butenolide ring. A conformational change occurs in the hydrolase that results in interaction with the F-box protein MAX2. Downstream signal transduction is then likely to occur via SCF (Skp-Cullin-F-box complex-mediated ubiquitination of target proteins and their subsequent degradation. The role of the catalytic activity of the hydrolase is unclear but it may be integral in binding as well as possibly allowing the signal to be cleared from the receptor. The α/β hydrolase fold family consists mostly of active enzymes, with a few notable exceptions. We suggest that DAD2 and KAI2 represent an intermediate stage where some catalytic activity is retained at the same time as a receptor role has evolved. © 2012 Janssen and Snowden. Source

Discover hidden collaborations