Entity

Time filter

Source Type

New York City, NY, United States

New York University is a private, nonsectarian American research university based in New York City. NYU's main campus is located at Greenwich Village in Lower Manhattan. Founded in 1831, NYU is one of the largest private nonprofit institutions of American higher education.NYU was elected to the Association of American Universities in 1950. NYU counts 35 Nobel Prize winners, three Abel Prize winners, 10 National Medal of Science recipients, 16 Pulitzer Prize winners, over 30 Academy Award winners, four Putnam Competition winners, Russ Prize, Gordon Prize, and Draper Prize winners, Turing Award winners, and Emmy, Grammy, and Tony Award winners among its faculty and alumni. NYU also has MacArthur and Guggenheim Fellowship holders as well as National Academy of science and National Academy of Engineering members among its past and present graduates and faculty.NYU is organized into more than 20 schools, colleges, and institutes, located in six centers throughout Manhattan and Downtown Brooklyn, as well as more than a dozen other sites across the world, with plans for further expansion. According to the Institute of International Education, NYU sends more students to study abroad than any other US college or university, and the College Board reports more online searches by international students for "NYU" than for any other university. Wikipedia.


Seeman N.C.,New York University
Annual Review of Biochemistry | Year: 2010

The combination of synthetic stable branched DNA and sticky-ended cohesion has led to the development of structural DNA nanotechnology over the past 30 years. The basis of this enterprise is that it is possible to construct novel DNA-based materials by combining these features in a self-assembly protocol. Thus, simple branched molecules lead directly to the construction of polyhedrons, whose edges consist of double helical DNA and whose vertices correspond to the branch points. Stiffer branched motifs can be used to produce self-assembled two-dimensional and three-dimensional periodic lattices of DNA (crystals). DNA has also been used to make a variety of nanomechanical devices, including molecules that change their shapes and molecules that can walk along a DNA sidewalk. Devices have been incorporated into two-dimensional DNA arrangements; sequence-dependent devices are driven by increases in nucleotide pairing at each step in their machine cycles. © 2010 by Annual Reviews. All rights reserved.


Amodio D.M.,New York University
Nature Reviews Neuroscience | Year: 2014

Despite global increases in diversity, social prejudices continue to fuel intergroup conflict, disparities and discrimination. Moreover, as norms have become more egalitarian, prejudices seem to have 'gone underground', operating covertly and often unconsciously, such that they are difficult to detect and control. Neuroscientists have recently begun to probe the neural basis of prejudice and stereotyping in an effort to identify the processes through which these biases form, influence behaviour and are regulated. This research aims to elucidate basic mechanisms of the social brain while advancing our understanding of intergroup bias in social behaviour. © 2014 Macmillan Publishers Limited. All rights reserved.


Cadwell K.,New York University
Immunity | Year: 2015

The mammalian virome includes diverse commensal and pathogenic viruses that evoke a broad range of immune responses from the host. Sustained viral immunomodulation is implicated in a variety of inflammatory diseases, but also confers unexpected benefits to the host. These outcomes of viral infections are often dependent on host genotype. Moreover, it is becoming clear that the virome is part of a dynamic network of microorganisms that inhabit the body. Therefore, viruses can be viewed as a component of the microbiome, and interactions with commensal bacteria and other microbial agents influence their behavior. This piece is a review of our current understanding of how the virome, together with other components of the microbiome, affects the function of the host immune system to regulate health and disease. The virome includes diverse viruses that interact with commensal microorganisms and evoke multifaceted immune responses. Cadwell examines the interplay between the virome, host immune system, and other members of the microbiome and discuss implications for human health and disease. © 2015 Elsevier Inc..


Moore K.J.,New York University | Tabas I.,Columbia University
Cell | Year: 2011

In atherosclerosis, the accumulation of apolipoprotein B-lipoproteins in the matrix beneath the endothelial cell layer of blood vessels leads to the recruitment of monocytes, the cells of the immune system that give rise to macrophages and dendritic cells. Macrophages derived from these recruited monocytes participate in a maladaptive, nonresolving inflammatory response that expands the subendothelial layer due to the accumulation of cells, lipid, and matrix. Some lesions subsequently form a necrotic core, triggering acute thrombotic vascular disease, including myocardial infarction, stroke, and sudden cardiac death. This Review discusses the central roles of macrophages in each of these stages of disease pathogenesis. © 2011 Elsevier Inc.


Nudler E.,New York University
Cell | Year: 2012

RNA polymerase is a ratchet machine that oscillates between productive and backtracked states at numerous DNA positions. Since its first description 15 years ago, backtracking - the reversible sliding of RNA polymerase along DNA and RNA - has been implicated in many critical processes in bacteria and eukaryotes, including the control of transcription elongation, pausing, termination, fidelity, and genome instability. © 2012 Elsevier Inc.

Discover hidden collaborations