Old Westbury, NY, United States

New York Institute of Technology

Old Westbury, NY, United States

New York Institute of Technology is a global private, independent, nonprofit, non-sectarian, coeducational research university. NYIT has five schools and two colleges, all with a strong emphasis on technology and applied scientific research: School of Architecture and Design, School of Education, School of Engineering and Computing science, School of Health Professions, School of Management, College of Arts and science and College of Osteopathic Medicine. The university has two New York campuses, one in Old Westbury Long Island and one near Columbus Circle in Manhattan, as well as several global campuses in: Abu Dhabi, United Arab Emirates; Nanjing, China; and Vancouver, Canada. New York Institute of Technology offers over 90 degree programs, including undergraduate, graduate, and professional degrees, in more than 50 fields of study, including architecture and design; arts and science; education; engineering and computing science; health professions; management; and osteopathic medicine. Its Carnegie Classification is Masters-Granting "Research University," very high research activity.NYIT students represent nearly all 50 U.S. states and 109 countries. NYIT consistently ranks in the "top 50" among U.S. universities in the north, as compiled by U.S. News & World Report. Wikipedia.

Time filter
Source Type

The invention relates to a catheter useful in recording His electrogram alternans. The catheter includes a catheter probe containing at least one row of receiving poles positioned at an edge of the catheter probe, equidistantly spaced from each other. An apparatus useful in receiving an electrical signal from cardiac tissue, said apparatus comprising a catheter probe at one end and a flexible elongate member at the other end, wherein said catheter probe comprises a plurality of receiving poles positioned in a row at a first edge of said probe, said poles positioned equidistant from each other, wherein said catheter probe is from about 6 cm to about 10 cm in length, and from about 3 mm to about 5 mm in width or diameter, and said elongate member is capable of moving through a human blood vessel.

The potentially debilitating condition known as gastroparesis, which results when stomach muscle contractions function abnormally, causing the stomach's contents to empty too slowly, affects as many as five million Americans. Often the cause of the disease is unknown and the underlying bioelectrical activity that initiates and coordinates gastric contractions, known as slow waves, is not fully understood. However, a first-of-its-kind portable wireless device developed by an NYIT-led research team can monitor stomach motility to enable physicians to measure and ultimately better understand slow wave activity. Aydin Farajidavar, Ph.D., assistant professor of Electrical and Computer Engineering at New York Institute of Technology (NYIT) School of Engineering and Computing Sciences, today presented results captured from his study - the first portable wireless device developed and validated in clinical settings to document gastric contractions in patients suffering from gastroparesis. Farajidavar's work, "A Novel System and Methodology for Continuous Ambulatory Monitoring of Gastric Slow Waves," was selected as a Poster of Distinction for presentation during Digestive Disease Week 2017. Further, it was rated in the top 10 percent of all AGA (American Gastroenterological Association) abstracts selected for poster presentation at DDW, the world's largest gathering of physicians, researchers, and industry in the fields of gastroenterology, hepatology, endoscopy, and gastrointestinal surgery. "From an engineering perspective, we know that the wireless device works effectively; the system and methodology we developed enable physicians to document slow waves in patients with gastroparesis. The system can help us to better understand the effect of electrical stimulation on gastric contractions and to examine a variety of hypotheses about the gastric activity," Farajidavar said. This research project is part of an ongoing effort in NYIT School of Engineering and Computing Sciences' Integrated Medical Systems laboratory to develop devices to better diagnose gastrointestinal disorders and diseases. The team's developed system consists of a portable module that can wirelessly transmit data to a back-end receiver connected to a PC to display and store for off-line analysis. The device can also log data on a memory card for long-term monitoring. In addition to three NYIT graduate engineering students and a postdoctoral fellow, Farajidavar's research team includes Thomas L. Abell, M.D. and Abigail Stocker, M.D., world-class gastroenterologists from University of Louisville Medical Center, which is participating in the National Institute of Diabetes and Digestive and Kidney Diseases-sponsored Gastroparesis Clinical Research Consortium. Each patient in the study, registered at University of Louisville under the care of Drs. Abell and Stocker, received two temporary electrodes and leads via endoscopy prior to having a permanent stimulator. One of the leads connected to the gastric stimulator; the other was connected to the developed recording system. The gastric waves were recorded wirelessly for short periods of time (approximately 10 minutes) before and after turning on the stimulator. Then each patient received the developed portable module, set in data-logging mode. Patients returned approximately five days later; in most cases, signals were recorded and analyzed successfully in terms of frequency and amplitudes. The frequency, amplitude, and shape of the short waves varied between the patients, and for each patient, varied depending on fed- and fast-states. "It is significant that the monitoring of the gastric activity was captured over the course of several days with patients in the trial utilizing portable devices. Now that activity in the stomach can be measured objectively, this ultimately could revolutionize how some digestive diseases can be diagnosed and treated," Farajidavar said. "This result could not have happened without the close collaboration between the NYIT engineering team and the University of Louisville physician team, and the patients who volunteered to participate in this study. I am privileged to have such hard-working students and postdoctoral fellow in my lab at NYIT." New York Institute of Technology (NYIT) offers 90 degree programs, including undergraduate, graduate, and professional degrees, in more than 50 fields of study, including architecture and design; arts and sciences; education; engineering and computing sciences; health professions; management; and osteopathic medicine. A non-profit independent, private institution of higher education, NYIT has 10,000 students attending campuses on Long Island and Manhattan, online, and at its global campuses. NYIT is guided by its mission to provide career-oriented professional education, offer access to opportunity to all qualified students, and support applications-oriented research that benefits the larger world. To date, 100,000 graduates have received degrees from NYIT. For more information, visit nyit.edu.

The invention relates to a catheter useful in recording His electrogram alternans. The catheter includes a catheter probe containing at least one row of receiving poles positioned at an edge of the catheter probe, equidistantly spaced from each other.

Agency: NSF | Branch: Standard Grant | Program: | Phase: SPECIAL PROJECTS - CISE | Award Amount: 311.54K | Year: 2016

Common smartphone authentication mechanisms such as PINs, graphical passwords, and fingerprint scans offer limited security. They are relatively easy to guess or spoof, and are ineffective when the smartphone is captured after the user has logged in. Multi-modal active authentication addresses these challenges by frequently and unobtrusively authenticating the user via behavioral biometric signals, such as touchscreen interaction, hand movements, gait, voice, and phone location. However, these techniques raise significant privacy and security concerns because the behavioral signals used for authentication represents personal identifiable data, and often expose private information such as user activity, health, and location. Because smartphones can be easily lost or stolen, it is paramount to protect all sensitive behavioral information collected and processed on these devices. One approach for securing behavioral data is to perform off-device authentication via privacy-preserving protocols. However, our experiments show that the energy required to execute these protocols, implemented using state-of-the-art techniques, is unsustainably high, and leads to very quick depletion of the smartphones battery.

This research advances the state of the art of privacy-preserving active authentication by devising new techniques that significantly reduce the energy cost of cryptographic authentication protocols on smartphones. Further, this research takes into account signals that indicate that the user has lost possession of the smartphone, in order to trigger user authentication only when necessary. The focus of this project is in sharp contrast with existing techniques and protocols, which have been largely agnostic to energy consumption patterns and to the user1s possession of the smartphone post-authentication. The outcome of this project is a suite of new cryptographic techniques and possession-aware protocols that enable secure energy-efficient active authentication of smartphone users. These cryptographic techniques advance the state of the art of privacy-preserving active authentication by re-shaping individual protocol components to take into account complex energy tradeoffs and network heterogeneity, integral to modern smartphones. Finally, this project will focus on novel techniques to securely offload computation related to active authentication from the smartphone to a (possibly untrusted) cloud, further reducing the energy footprint of authentication. The proposed research will thus make privacy-preserving active authentication practical on smartphones, from both an energy and performance perspective.

Agency: NSF | Branch: Standard Grant | Program: | Phase: SPRF-IBSS | Award Amount: 219.35K | Year: 2016

The Directorate of Social, Behavioral and Economic Sciences offers postdoctoral research fellowships to provide opportunities for recent doctoral graduates to obtain additional training, to gain research experience under the sponsorship of established scientists, and to broaden their scientific horizons beyond their undergraduate and graduate training. Postdoctoral fellowships are further designed to assist new scientists to direct their research efforts across traditional disciplinary lines and to avail themselves of unique research resources, sites, and facilities, including at foreign locations. This postdoctoral fellowship award supports a rising scholar at the intersection of several fields of science: Human Evolution, Biomechanics, Evolutionary Modeling and Primatology to investigate the origins of the peculiar type of locomotion (also called knuckle-walking) that is used only by our closest living primate relatives, chimpanzees and gorillas, and may have been used by our earliest ancestors. This bizarre form of locomotion has led to decades of research focusing on why an animal would knuckle-walk over any other form of locomotion, and when and how many times it has evolved. However, critical to addressing any hypotheses concerning the origin of knuckle-walking are basic data that allow the Fellow to understand how it works. By fully understanding how knucklewalking works, the project team will be able to directly investigate the origin and evolution of knucklewalking in apes. This will enable the team to infer its presence in fossil apes as well as the last common ancestor of humans and chimpanzees. The project has substantial collaboration with scientists and students in Rwanda, going much deeper beyond simply doing fieldwork and data collection. The research team will host Rwandan university students for internships, and students conducting their senior research at the Karisoke Research Center. This project also facilitates opportunities to engage Rwandan undergraduate students and early career scientists. Through this type of international collaboration, US scientists, postdoctoral scholars and students engage in meaningful research to advance the state of the art in the field of anthropology and biomechanics.

In this project, a team of scientists utilize state-of-the-art laboratory- and field-based biomechanical analyses of locomotion in chimpanzees, gorillas, and macaques, as well as phylogenetic comparative methodologies in order to test assumptions about the evolution of this unique form of locomotion, and to understand how, when, and how many times this locomotor behavior evolved. Specifically, in this project the team of scientists will: 1) perform a 3-D jointlevel mechanical analysis of knuckle-walking in chimpanzees and digitigrade/palmigrade walking in macaques, 2) create a computational model that allows for examination of the benefits of knuckle-walking over other forms of terrestrial locomotion, 3) use evolutionary modeling to track the evolution of knuckle-walking in the hominoid tree of life and to infer its presence in fossil apes, and 4) develop protocols for collecting non-invasive 3-D field kinematic data from wild, critically endangered mountain gorillas, including knuckle-walking. The broader impacts of this research will target both scientific and educational domains. The researchers will develop protocols to investigate locomotion in wild, critically endangered mountain gorillas. This will not only provide never-before-seen insights into gorilla locomotion, but the protocols will be widely applicable to other endangered species. Moreover, this project will support the research of an early-career scientist, and will involve mentoring of graduate and undergraduate students. By training the next generation of scientists and creating freely-available data resources and research protocols, this project will facilitate discoveries about the origin of our closest living ape relatives, as well as the origin of our own species, that go far beyond the present project. The project involves international collaboration at multiple levels, and is co-funded by the NSF Office of International Science and Engineering.

Agency: NSF | Branch: Standard Grant | Program: | Phase: PHYLOGENETIC SYSTEMATICS | Award Amount: 51.48K | Year: 2015

Despite advances in knowledge of brain function, the relationship between brain evolution and ecological diversity remains poorly known. A prominent example is that of birds. Taking to the air enabled the dinosaurian ancestors of birds to exploit a range of ecological niches that now underlie the remarkable modern diversity of the group (approximately 10,000 living species). A significant part of this evolutionary success may have stemmed from the development of a relatively large brain, which has been considered necessary for coordinating the various, nuanced components of powered flight. This study complements the NSF BRAIN initiative by using a cross-disciplinary approach to understand the complex neurological evolution of birds and their dinosaurian relatives. To that end, an array of new techniques and new applications of existing technologies are employed to document the major changes in the brain associated with the origin of powered flight. This study also will establish a model of brain expansion complementing that already available for mammals. The outcome will be an unprecedented database of avian brain anatomy that includes not only imagery of morphological systems but also their relation to data generated through brain function.

The relationship between neuroanatomical, cognitive and behavioral evolution remains poorly understood, especially in deep time and across the vertebrate tree of life. This study addresses this relationship using a cross-disciplinary investigation of the evolutionary link between the large brain of living birds and the morphological changes that mark the transition from cursorial (running) dinosaur to flying bird. Initial steps use innovative imaging methods and novel staining techniques to generate the first data on what areas of the brain birds use while flying, and how this activity differs from that of other behaviors. These data will serve as a framework for a broad analysis of encephalization (increasing head size) within living birds and along the lineage where avian flight originated. Shared landmarks will be used to subdivide the endocranial cavity into functionally relevant partitions that allow testing for volumetric size changes between individual neural structures, including those most active during flight. This study also will use geometric morphometrics (anatomical comparisons) to assess covariation between neuroanatomical partitions and thus the presence of functionally and/or evolutionarily integrated regions of the brain. In short, the proposed study will generate data on how birds use their brain and apply those data to better understand the ancient relationship between brain evolution and the origin of the highly derived avian body plan.

Agency: NSF | Branch: Continuing grant | Program: | Phase: SEDIMENTARY GEO & PALEOBIOLOGY | Award Amount: 220.18K | Year: 2014

How Development and Behavior Interact to Change Skull Form: Exploring and Sharing Evolutionary Insights from the Fossil Record of Cetaceans (Whales, Dolphins, and Porpoises)

Jonathan H. Geisler
New York Institute of Technology
NSF EAR-1349607

Extant cetaceans (whales, dolphins, and porpoises) display an extraordinary diversity of skull shapes, yet there is wide anatomical gap between the skulls of cetaceans and those of other mammals. Fortunately the fossil record of cetaceans bridges much of this anatomical gap, making it one of the best documented, but least appreciated, examples of large-scale evolutionary change. In this project we will explore how the cetacean skull evolved and test whether its shape was influenced by changes in brain size, feeding behavior, or the advent of echolocation. To accomplish these aims we will apply a wide array of technology to more than 400 skulls of recent and fossil species, including a laser scanner to generate 3D digital computer models of skulls, X-ray computed tomography (CT scans) to probe inside fossil skulls, and sophisticated computer applications that can analyze the data we collect in the context of evolutionary relationships. We will also formally name four new species of 30 million year old fossil whales that document key stages in the cetacean evolution.

Our project will use several strategies to share and disseminate our discoveries. The new fossil species we name will be displayed at the College of Charleston Natural History Museum, and 3D printed models of their inner ears and brains (developed from CT scans) will be displayed at that museum as well as at the Georgia Southern Museum. In both places these objects and specimens will be integrated into exhibits that describe the remarkable history of whale and dolphin evolution. A wider audience will learn of our discoveries through an updated website on cetacean evolution. In all stages of our project, we will involve students in the act of scientific investigation, thus training future scientists. Specifically we will engage undergraduates at the College of Charleston and New York Institute of Technology as well as medical students at the latter institution. A Postdoctoral Scholar is part of the project team, and through this project, he/she will develop a diverse skill set that should serve as a catalyst for a successful career in science.

Agency: NSF | Branch: Standard Grant | Program: | Phase: | Award Amount: 98.88K | Year: 2015

1541866 (Assaf- Anid). The workshop Food, Energy, and Water (FEW) Nexus in Sustainable Cities, to be held in Beijing on October 20 and 21, 2015, will convene participants from both the United States and China. Both nations are principal actors in global sustainability. The FEW workshop will provide participants from both nations opportunities to explore scientific challenges of mutual interest in sustainability and stressors on the built environment in relation to the FEW nexus. The workshops programming team is led by New York Institute of Technology (NYIT) in collaboration with Peking University (PKU). Several academic, government, and private entities will be actively engaged in planning the workshop, including from the United States: NYIT (Dr. Nada Assaf-Anid), and the American Institute of Chemical Engineers and its Institute for Sustainability (AIChE-IfS, Dr. Darlene Schuster), and from China: Peking University (Dr. Chunmiao Zheng) and Wuhan University (Dr. Xiaohui Cui), along with representatives from the various agencies in the U.S. and China. The overarching goal of the workshop is to stimulate basic research on the interdependence of systems involving agriculture, water, and energy, as well as to identify barriers to sustainability in food production, transport, distribution, use, and access in urban environments.

The workshop will cover several research areas, including sustainability and life-cycle assessment challenges in addressing complex systems-based indicators and responses to stressors and coupling those responses to the FEW system, as well as technology breakthroughs and approaches for more efficient FEW resource utilization and reuse in cities. The workshop will enhance scientific cooperation between U.S. and Chinese scholars, educators, industry practitioners, government agency representatives, urban planners and policymakers. The workshop is to result in a white paper on scientific, engineering and information systems and data challenges in understanding FEW systems.

This workshop is co-funded by the CBET/ENG Environmental Sustainability program and the Global Venture Fund (GVF) of the Office of International Science and Engineering (OISE).

Agency: NSF | Branch: Standard Grant | Program: | Phase: | Award Amount: 379.99K | Year: 2016

This CISE Research Experiences for Undergraduates (REU) Site award funds the renewal of an outstanding REU site at New York Institute of Technology. The site will recruit undergraduates from across the nation to participate in research related to securing mobile devices such as smart phones and wireless networks. Securing mobile devices and networks is an area of current interest that is well-suited to undergraduate research productivity. The students will use state-of-the-art research environments to address the challenges of securing mobile devices by creating new methods for authenticating users of mobile devices, efficient cryptographic protocols that preserve privacy of data, detecting malware, and designing secure communication protocols using both hardware and software approaches. This site should help develop a group of computing professionals who can design the systems of the future that impact society and enhance our quality of life. The REU experience provides students with the foundations and inspiration to pursue computing careers and research in areas that are rapidly evolving and are of importance to the nation.

The project is led by an outstanding team offering modern facilities and professional mentors to guide undergraduates in explorations of problems related to mobile security. Students will learn how to use current tools and techniques to solve those problems that have direct impact on people. The team will use proven strategies to recruit undergraduate students from groups traditionally under-represented in computer science. The students will participate in research and professional development activities all designed to achieve the goals of retaining and graduating undergraduate students in computer science and engineering, recruiting students from groups traditionally under-represented in computing fields, and increasing recruitment of students into graduate programs.

New York Institute of Technology | Date: 2014-11-12

A motorized walker is provided that can enable users to walk without being slowed by the walker and without needing to exert themselves to push the walker forward. The motorized walker provides additional haptic speed cues to inform the users posture and locomotion control to prevent falling.

Loading New York Institute of Technology collaborators
Loading New York Institute of Technology collaborators