New York City, NY, United States
New York City, NY, United States

Time filter

Source Type

Ginzburg Y.,New York Blood Center | Rivella S.,Cornell University
Blood | Year: 2011

β-thalassemia is a disease characterized by anemia and is associated with ineffective erythropoiesis and iron dysregulation resulting in iron overload. The peptide hormone hepcidin regulates iron metabolism, and insufficient hepcidin synthesis is responsible for iron overload in minimally transfused patients with this disease. Understanding the crosstalk between erythropoiesis and iron metabolism is an area of active investigation in which patients with and models of β-thalassemia have provided significant insight. The dependence of erythropoiesis on iron presupposes that iron demand for hemoglobin synthesis is involved in the regulation of iron metabolism. Major advances have been made in understanding iron availability for erythropoiesis and its dysregulation in β-thalassemia. In this review, we describe the clinical characteristics and current therapeutic standard in β-thalassemia, explore the definition of ineffective erythropoiesis, and discuss its role in hepcidin regulation. In preclinical experiments using interventions such as transferrin, hepcidin agonists, and JAK2 inhibitors, we provide evidence of potential new treatment alternatives that elucidate mechanisms by which expanded or ineffective erythropoiesis may regulate iron supply, distribution, and utilization in diseasessuch as β-thalassemia. © 2011 by The American Society of Hematology.


Zelinski T.,University of Manitoba | Coghlan G.,University of Manitoba | Liu X.-Q.,University of Manitoba | Reid M.E.,New York Blood Center
Nature Genetics | Year: 2012

The high-incidence erythrocyte blood group antigen Jr a has been known in transfusion medicine for over 40 years. To identify the gene encoding Jr a, we performed SNP analysis of genomic DNA from six Jr(a-) individuals. All individuals shared a homozygous region of 397,000 bp at chromosome 4q22.1 that contained the gene ABCG2, and DNA sequence analysis showed that ABCG2 null alleles define the Jr(a-) phenotype. © 2012 Nature America, Inc. All rights reserved.


Mohandas N.,New York Blood Center
Medical microbiology and immunology | Year: 2012

Invasion by the malaria parasite, Plasmodium falciparum, brings about extensive changes in the host red cells. These include loss of the normal discoid shape, increased rigidity of the membrane, elevated permeability to a wide variety of ionic and other species and increased adhesiveness, most notably to endothelial surfaces. These effects facilitate survival of the parasite within the host cell and tend to increase the virulence of disease that includes cerebral malaria and anemia. Numerous proteins secreted by the internalized parasite and interacting with red cell membrane proteins are responsible for the changes occurring to the host cell. Anemia, a serious clinical manifestation of malaria, is due to increased destruction of both infected and uninfected red cells due to membrane alterations, as well as ineffective erythropoiesis. There is very good evidence that various red cell disorders including hemoglobinopathies and hereditary ovalocytosis decrease the virulence of disease following parasite infection. A number of mechanism(s) are likely responsible for the protective effect of various red cell abnormalities including decreased invasion, impaired intraerythrocytic development of the parasites and altered interaction between exported parasite proteins and the red cell membrane skeleton.


Terminal erythroid differentiation starts from morphologically recognizable proerythroblasts that proliferate and differentiate to generate red cells. Although this process has been extensively studied in mice, its characterization in humans is limited. By examining the dynamic changes of expression of membrane proteins during in vitro human terminal erythroid differentiation, we identified band 3 and α4 integrin as optimal surface markers for isolating 5 morphologically distinct populations at successive developmental stages. Functional analysis revealed that these purified cell populations have distinct mitotic capacity. Use of band 3 and α4 integrin enabled us to isolate erythroblasts at specific developmental stages from primary human bone marrow. The ratio of erythroblasts at successive stages followed the predicted 1:2:4:8:16 pattern. In contrast, bone marrows from myelodysplastic syndrome patients exhibited altered terminal erythroid differentiation profiles. Thus, our findings not only provide new insights into the genesis of the red cell membrane during human terminal erythroid differentiation but also offer a means of isolating and quantifying each developmental stage during terminal erythropoiesis in vivo. Our findings should facilitate a comprehensive cellular and molecular characterization of each specific developmental stage of human erythroblasts and should provide a powerful means of identifying stage-specific defects in diseases associated with pathological erythropoiesis.


Foxp3(+) regulatory T cells (Tregs) play a pivotal role in control of autoimmunity and pathological immune responses. Helios, the Ikarus family transcription factor, binds to the Foxp3 promoter, stabilizing its expression, and is expressed in 70% of peripheral Tregs of healthy individuals. This frequency is altered during malignancy, infection, and autoimmunity, although the mechanisms that control proliferation and relative numbers of Helios(+/-) Tregs remain largely unknown. Using a T-cell-monocyte in vitro stimulation assay, we now show that proliferation of Helios(+) Tregs is inhibited by CD16(+) monocyte subset. Antibody blocking with anti-interleukin (IL)-12 reversed this inhibition, whereas addition of IL-12 suppressed Helios(+) Treg expansion, indicating that CD16(+) monocyte control of Helios(+) Treg numbers is mediated through IL-12. In contrast, proliferation of Helios(-) Tregs, which express higher levels of tumor necrosis factor receptor II (TNFRII), was suppressed by TNF-α, whereas anti-TNF-α and anti-TNFRII reversed the inhibition. CD16(-) monocyte subset was mainly responsible for TNF-α-mediated control of Helios(-) Treg expansion. Altogether, these data suggest a differential role for monocyte subsets in control of Helios(+/-) Treg development that is mediated by distinct inflammatory cytokines. These data may have important implications for understanding the pathogenesis as well as control of chronic inflammatory and autoimmune diseases.


Zhong H.,New York Blood Center
Blood | Year: 2012

Immune thrombocytopenia (ITP) results from decreased platelet production and accelerated platelet destruction. Impaired CD4(+) regulatory T-cell (Treg) compartment and skewed Th1 and possibly Th17 responses have been described in ITP patients. The trigger for aberrant T-cell polarization remains unknown. Because monocytes have a critical role in development and polarization of T-cell subsets, we explored the contribution of monocyte subsets in control of Treg and Th development in patients with ITP. Unlike circulating classic CD14(hi)CD16(-) subpopulation, the CD16(+) monocyte subset was expanded in ITP patients with low platelet counts on thrombopoietic agents and positively correlated with T-cell CD4(+)IFN-γ(+) levels, but negatively with circulating CD4(+)CD25(hi)Foxp3(+) and IL-17(+) Th cells. Using a coculture model, we found that CD16(+) ITP monocytes promoted the expansion of IFN-γ(+)CD4(+) cells and concomitantly inhibited the proliferation of Tregs and IL-17(+) Th cells. Th-1-polarizing cytokine IL-12, secreted after direct contact of patient T-cell and CD16(+) monocytes, was responsible for the inhibitory effect on Treg and IL-17(+)CD4(+) cell proliferation. Our findings are consistent with ITP CD16(+) monocytes promoting Th1 development, which in turn negatively regulates IL-17 and Treg induction. This underscores the critical role of CD16(+) monocytes in the generation of potentially pathogenic Th responses in ITP.


Yazdanbakhsh K.,New York Blood Center
Hematology / the Education Program of the American Society of Hematology. American Society of Hematology. Education Program | Year: 2011

Some clinical studies have identified potential adverse patient outcomes associated with RBC storage length. This may in part be due to the release of potentially hazardous bioactive products that accumulate during storage and are delivered at high concentrations during transfusion. In this situation, a proinflammatory tissue microenvironment may be established that can alter immunoregulatory mechanisms. This review highlights some of the potential immunomodulatory effects of stored RBCs that may be responsible for adverse transfusion reactions.


Shaz B.H.,New York Blood Center
Blood | Year: 2014

In this issue of Blood, McKenzie et al provide further insight into the mechanism of antibody-mediated transfusion-related acute lung injury (TRALI), and Silliman et al demonstrate the potential use of a novel filter to mitigate red blood cell (RBC) transfusion-associated TRALI. The first manuscript with studies performed in a murine model suggests that HLA class I antibody-mediated TRALI, which requires antibody binding to peripheral blood monocytes producing interleukin-8 (IL-8) which binds chemokine (C-X-C motif) ligand (CXCL), is a chemotactic for neutrophils and induces neutrophil degranulation; the antibody-coated monocytes also result in lung damage. The second manuscript shows that prestorage RBC filtration to absorb antibodies and lipids as well as white blood cells and platelets, decreases TRALI-associated antibodies and neutrophil-priming activity of the unit, mitigating TRALI in an animal model. © 2014 by The American Society of Hematology.


Patent
New York Blood Center | Date: 2014-04-09

Disclosed herein are systems and methods for user protection from blood splatter during blood tubing sealing. Systems and methods described herein utilize a blood splatter safety shield attached to a handheld blood tubing sealer, comprising one or more barriers, wherein at least one barrier runs substantially perpendicular to the handheld blood tubing sealer separating blood tubing being sealed from a user of the handheld blood tubing sealer.


Patent
New York Blood Center | Date: 2015-07-10

Disclosed herein are trimeric polypeptide pharmaceutical compositions comprising three monomers, each monomer comprising a polypeptide having the amino acid sequence of the N-terminal heptad repeat (NHR or HR1) or C-terminal heptad repeat (CHR or HR2) of the transmembrane glycoprotein of human immunodeficiency virus (HIV) and a trimerization motif.

Loading New York Blood Center collaborators
Loading New York Blood Center collaborators