Entity

Time filter

Source Type


Lombardi G.,Cayetano Heredia Peruvian University | Lanzirotti A.,University of Chicago | Qualls C.,University of New Mexico | Socola F.,University of Miami | And 2 more authors.
Journal of Biomedicine and Biotechnology | Year: 2012

Mercury is added to the biosphere by anthropogenic activities raising the question of whether changes in the human chromatin, induced by mercury, in a parental generation could allow adaptation of their descendants to mercury. We review the history of Andean mining since pre-Hispanic times in Huancavelica, Peru. Despite the persistent degradation of the biosphere today, no overt signs of mercury toxicity could be discerned in present day inhabitants. However, mercury is especially toxic to the autonomic nervous system (ANS). We, therefore, tested ANS function and biologic rhythms, under the control of the ANS, in 5 Huancavelicans and examined the metal content in their hair. Mercury levels varied from none to 1.014ppm, significantly less than accepted standards. This was confirmed by microfocused synchrotron X-ray fluorescence analysis. Biologic rhythms were abnormal and hair growth rate per year, also under ANS control, was reduced (P 0.001). Thus, evidence of mercurys toxicity in ANS function was found without other signs of intoxication. Our findings are consistent with the hypothesis of partial transgenerational inheritance of tolerance to mercury in Huancavelica, Peru. This would generally benefit survival in the Anthropocene, the man-made world, we now live in. © Copyright 2012 Guido Lombardi et al. Source


Qualls C.,University of New Mexico | Appenzeller O.,New Mexico Health Enhancement and Marathon Clinics Research Foundation
BioMed Research International | Year: 2015

We examine two important measures that can be made in bioarcheology on the remains of human and vertebrate animals. These remains consist of bone, teeth, or hair; each shows growth increments and each can be assayed for isotope ratios and other chemicals in equal intervals along the direction of growth. In each case, the central data is a time series of measurements. The first important measures are spectral estimates in spectral analyses and linear system analyses; we emphasize calculation of periodicities and growth rates as well as the comparison of power in bands. A low frequency band relates to the autonomic nervous system (ANS) control of metabolism and thus provides information about the life history of the individual of archeological interest. Turning to nonlinear system analysis, we discuss the calculation of SM Pinus' approximate entropy (ApEn) for short or moderate length time series. Like the concept that regular heart R-R interval data may indicate lack of health, low values of ApEn may indicate disrupted metabolism in individuals of archeological interest and even that a tipping point in deteriorating metabolism may have been reached just before death. This adds to the list of causes of death that can be determined from minimal data. © 2015 Clifford Qualls and Otto Appenzeller. Source


Pucci O.,University of Toronto | Qualls C.,University of New Mexico | Battisti-Charbonney A.,University of Toronto | Balaban D.Y.,University of Toronto | And 3 more authors.
PLoS ONE | Year: 2012

Because the skin is an oxygen sensor in amphibians and mice, we thought to confirm this function also in humans. The human upright posture, however, introduces additional functional demands for the maintenance of oxygen homeostasis in which cerebral blood flow and autonomic nervous system (ANS) function may also be involved. We examined nine males and three females. While subjects were breathing ambient air, at sea level, we changed gases in a plastic body-bag during two conditions of the experiment such as to induce skin hypoxia (with pure nitrogen) or skin normoxia (with air). The subjects performed a test of hypoxic ventilatory drive during each condition of the experiment. We found no differences in the hypoxic ventilatory drive tests. However, ANS function and cerebral blood flow velocities were modulated by skin hypoxia and the effect was significantly greater on the left than right middle cerebral arteries. We conclude that skin hypoxia modulates ANS function and cerebral blood flow velocities and this might impact life styles and tolerance to ambient hypoxia at altitude. Thus the skin in normal humans, in addition to its numerous other functions, is also an oxygen sensor. © 2012 Pucci et al. Source


Zhou D.,University of California at San Diego | Udpa N.,University of California at San Diego | Ronen R.,University of California at San Diego | Stobdan T.,University of California at San Diego | And 22 more authors.
American Journal of Human Genetics | Year: 2013

The hypoxic conditions at high altitudes present a challenge for survival, causing pressure for adaptation. Interestingly, many high-altitude denizens (particularly in the Andes) are maladapted, with a condition known as chronic mountain sickness (CMS) or Monge disease. To decode the genetic basis of this disease, we sequenced and compared the whole genomes of 20 Andean subjects (10 with CMS and 10 without). We discovered 11 regions genome-wide with significant differences in haplotype frequencies consistent with selective sweeps. In these regions, two genes (an erythropoiesis regulator, SENP1, and an oncogene, ANP32D) had a higher transcriptional response to hypoxia in individuals with CMS relative to those without. We further found that downregulating the orthologs of these genes in flies dramatically enhanced survival rates under hypoxia, demonstrating that suppression of SENP1 and ANP32D plays an essential role in hypoxia tolerance. Our study provides an unbiased framework to identify and validate the genetic basis of adaptation to high altitudes and identifies potentially targetable mechanisms for CMS treatment. © 2013 The American Society of Human Genetics. Source


Qualls C.,University of New Mexico | Bianucci R.,University of Oslo | Bianucci R.,University of Turin | Spilde M.N.,University of New Mexico | And 3 more authors.
BioMed Research International | Year: 2015

Bioarcheology is cross disciplinary research encompassing the study of human remains. However, life's activities have, up till now, eluded bioarcheological investigation. We hypothesized that growth lines in hair might archive the biologic rhythms, growth rate, and metabolism during life. Computational modeling predicted the physical appearance, derived from hair growth rate, biologic rhythms, and mental state for human remains from the Roman period. The width of repeat growth intervals (RI's) on the hair, shown by confocal microscopy, allowed computation of time series of periodicities of the RI's to model growth rates of the hairs. Our results are based on four hairs from controls yielding 212 data points and the RI's of six cropped hairs from Zweeloo woman's scalp yielding 504 data points. Hair growth was, ten times faster than normal consistent with hypertrichosis. Cantú syndrome consists of hypertrichosis, dyschondrosteosis, short stature, and cardiomegaly. Sympathetic activation and enhanced metabolic state suggesting arousal was also present. Two-photon microscopy visualized preserved portions of autonomic nerve fibers surrounding the hair bulb. Scanning electron microscopy found evidence that a knife was used to cut the hair three to five days before death. Thus computational modeling enabled the elucidation of life's activities 2000 years after death in this individual with Cantu syndrome. This may have implications for archeology and forensic sciences. © 2015 Clifford Qualls et al. Source

Discover hidden collaborations