New England Primate Research Center

Southborough, MA, United States

New England Primate Research Center

Southborough, MA, United States

Time filter

Source Type

Mire C.E.,University of Texas Medical Branch | Miller A.D.,Harvard University | Miller A.D.,New England Primate Research Center | Carville A.,Harvard University | And 9 more authors.
PLoS Neglected Tropical Diseases | Year: 2012

The filoviruses, Marburg virus and Ebola virus, cause severe hemorrhagic fever with high mortality in humans and nonhuman primates. Among the most promising filovirus vaccines under development is a system based on recombinant vesicular stomatitis virus (rVSV) that expresses an individual filovirus glycoprotein (GP) in place of the VSV glycoprotein (G). The main concern with all replication-competent vaccines, including the rVSV filovirus GP vectors, is their safety. To address this concern, we performed a neurovirulence study using 21 cynomolgus macaques where the vaccines were administered intrathalamically. Seven animals received a rVSV vector expressing the Zaire ebolavirus (ZEBOV) GP; seven animals received a rVSV vector expressing the Lake Victoria marburgvirus (MARV) GP; three animals received rVSV-wild type (wt) vector, and four animals received vehicle control. Two of three animals given rVSV-wt showed severe neurological symptoms whereas animals receiving vehicle control, rVSV-ZEBOV-GP, or rVSV-MARV-GP did not develop these symptoms. Histological analysis revealed major lesions in neural tissues of all three rVSV-wt animals; however, no significant lesions were observed in any animals from the filovirus vaccine or vehicle control groups. These data strongly suggest that rVSV filovirus GP vaccine vectors lack the neurovirulence properties associated with the rVSV-wt parent vector and support their further development as a vaccine platform for human use.


Colantonio A.D.,Harvard University | Bimber B.N.,University of Wisconsin - Madison | Neidermyer Jr. W.J.,Harvard University | Reeves R.K.,New England Primate Research Center | And 8 more authors.
PLoS Pathogens | Year: 2011

Molecular interactions between killer immunoglobulin-like receptors (KIRs) and their MHC class I ligands play a central role in the regulation of natural killer (NK) cell responses to viral pathogens and tumors. Here we identify Mamu-A1*00201 (Mamu-A*02), a common MHC class I molecule in the rhesus macaque with a canonical Bw6 motif, as a ligand for Mamu-KIR3DL05. Mamu-A1*00201 tetramers folded with certain SIV peptides, but not others, directly stained primary NK cells and Jurkat cells expressing multiple allotypes of Mamu-KIR3DL05. Differences in binding avidity were associated with polymorphisms in the D0 and D1 domains of Mamu-KIR3DL05, whereas differences in peptide-selectivity mapped to the D1 domain. The reciprocal exchange of the third predicted MHC class I-contact loop of the D1 domain switched the specificity of two Mamu-KIR3DL05 allotypes for different Mamu-A1*00201-peptide complexes. Consistent with the function of an inhibitory KIR, incubation of lymphocytes from Mamu-KIR3DL05+ macaques with target cells expressing Mamu-A1*00201 suppressed the degranulation of tetramer-positive NK cells. These observations reveal a previously unappreciated role for D1 polymorphisms in determining the selectivity of KIRs for MHC class I-bound peptides, and identify the first functional KIR-MHC class I interaction in the rhesus macaque. The modulation of KIR-MHC class I interactions by viral peptides has important implications to pathogenesis, since it suggests that the immunodeficiency viruses, and potentially other types of viruses and tumors, may acquire changes in epitopes that increase the affinity of certain MHC class I ligands for inhibitory KIRs to prevent the activation of specific NK cell subsets.


Berntsson R.P.-A.,University of Stockholm | Peng L.,Harvard University | Peng L.,New England Primate Research Center | Svensson L.M.,University of Stockholm | And 3 more authors.
Structure | Year: 2013

Summary Botulinum neurotoxins (BoNTs) can cause paralysis at exceptionally low concentrations and include seven serotypes (BoNT/A-G). The chimeric BoNT/DC toxin has a receptor binding domain similar to the same region in BoNT/C. However, BoNT/DC does not share protein receptor with BoNT/C. Instead, it shares synaptotagmin (Syt) I and II as receptors with BoNT/B, despite their low sequence similarity. Here, we present the crystal structures of the binding domain of BoNT/DC in complex with the recognition domains of its protein receptors, Syt-I and Syt-II. The structures reveal that BoNT/DC possesses a Syt binding site, distinct from the established Syt-II binding site in BoNT/B. Structure-based mutagenesis further shows that hydrophobic interactions play a key role in Syt binding. The structures suggest that the BoNT/DC ganglioside binding sites are independent of the protein receptor binding site. Our results reveal the remarkable versatility in the receptor recognition of the BoNTs. © 2013 Elsevier Ltd.


Barouch D.H.,Beth Israel Deaconess Medical Center | Barouch D.H.,Massachusetts General Hospital | O'Brien K.L.,Beth Israel Deaconess Medical Center | Simmons N.L.,Beth Israel Deaconess Medical Center | And 19 more authors.
Nature Medicine | Year: 2010

The worldwide diversity of HIV-1 presents an unprecedented challenge for vaccine development. Antigens derived from natural HIV-1 sequences have elicited only a limited breadth of cellular immune responses in nonhuman primate studies and clinical trials to date. Polyvalent 'mosaic' antigens, in contrast, are designed to optimize cellular immunologic coverage of global HIV-1 sequence diversity. Here we show that mosaic HIV-1 Gag, Pol and Env antigens expressed by recombinant, replication-incompetent adenovirus serotype 26 vectors markedly augmented both the breadth and depth without compromising the magnitude of antigen-specific T lymphocyte responses as compared with consensus or natural sequence HIV-1 antigens in rhesus monkeys. Polyvalent mosaic antigens therefore represent a promising strategy to expand cellular immunologic vaccine coverage for genetically diverse pathogens such as HIV-1. © 2010 Nature America, Inc. All rights reserved.


Santra S.,Beth Israel Deaconess Medical Center | Liao H.-X.,Duke University | Zhang R.,Duke University | Muldoon M.,University of Manchester | And 18 more authors.
Nature Medicine | Year: 2010

An effective HIV vaccine must elicit immune responses that recognize genetically diverse viruses. It must generate CD8+ T lymphocytes that control HIV replication and CD4+ T lymphocytes that provide help for the generation and maintenance of both cellular and humoral immune responses against the virus. Creating immunogens that can elicit cellular immune responses against the genetically varied circulating isolates of HIV presents a key challenge for creating an HIV vaccine. Polyvalent mosaic immunogens derived by in silico recombination of natural strains of HIV are designed to induce cellular immune responses that recognize genetically diverse circulating virus isolates. Here we immunized rhesus monkeys by plasmid DNA prime and recombinant vaccinia virus boost with vaccine constructs expressing either consensus or polyvalent mosaic proteins. As compared to consensus immunogens, the mosaic immunogens elicited CD8+ T lymphocyte responses to more epitopes of each viral protein than did the consensus immunogens and to more variant sequences of CD8 + T lymphocyte epitopes. This increased breadth and depth of epitope recognition may contribute both to protection against infection by genetically diverse viruses and to the control of variant viruses that emerge as they mutate away from recognition by cytotoxic T lymphocytes. © 2010 Nature America, Inc. All rights reserved.


Barouch D.H.,Beth Israel Deaconess Medical Center | Barouch D.H.,Massachusetts Institute of Technology | Whitney J.B.,Beth Israel Deaconess Medical Center | Moldt B.,Scripps Research Institute | And 25 more authors.
Nature | Year: 2013

Human immunodeficiency virus type 1 (HIV-1)-specific monoclonal antibodies with extraordinary potency and breadth have recently been described. In humanized mice, combinations of monoclonal antibodies have been shown to suppress viraemia, but the therapeutic potential of these monoclonal antibodies has not yet been evaluated in primates with an intact immune system. Here we show that administration of a cocktail of HIV-1-specific monoclonal antibodies, as well as the single glycan-dependent monoclonal antibody PGT121, resulted in a rapid and precipitous decline of plasma viraemia to undetectable levels in rhesus monkeys chronically infected with the pathogenic simian-human immunodeficiency virus SHIV-SF162P3. A single monoclonal antibody infusion afforded up to a 3.1 log decline of plasma viral RNA in 7 days and also reduced proviral DNA in peripheral blood, gastrointestinal mucosa and lymph nodes without the development of viral resistance. Moreover, after monoclonal antibody administration, host Gag-specific T-lymphocyte responses showed improved functionality. Virus rebounded in most animals after a median of 56 days when serum monoclonal antibody titres had declined to undetectable levels, although, notably, a subset of animals maintained long-term virological control in the absence of further monoclonal antibody infusions. These data demonstrate a profound therapeutic effect of potent neutralizing HIV-1-specific monoclonal antibodies in SHIV-infected rhesus monkeys as well as an impact on host immune responses. Our findings strongly encourage the investigation of monoclonal antibody therapy for HIV-1 in humans. © 2013 Macmillan Publishers Limited. All rights reserved.


Lutz C.K.,Southwest Research Institute | Coleman K.,Oregon National Primate Research Center | Worlein J.,Washington National Primate Research Center | Novak M.A.,University of Massachusetts Amherst | Novak M.A.,New England Primate Research Center
Journal of the American Association for Laboratory Animal Science | Year: 2013

Alopecia is a common problem in rhesus macaque colonies. A possible cause of this condition is hair-pulling; however the true relationship between hair-pulling and alopecia is unknown. The purpose of this study was to examine the relationship between hair loss and hair-pulling in 1258 rhesus macaques housed in 4 primate colonies across the United States. Alopecia levels ranged from 34.3% to 86.5% (mean, 49.3%) at the primate facilities. At facilities reporting a sex-associated difference, more female macaques were reported to exhibit alopecia than were males. In contrast, more males were reported to hair-pull. Animals reported to hair-pull were significantly more likely to have some amount of alopecia, but rates of hair-pulling were substantially lower than rates of alopecia, ranging from 0.6% to 20.5% (mean, 7.7%) of the populations. These results further demonstrate that hair-pulling plays only a small role in alopecia in rhesus macaques. Copyright 2013 by the American Association for Laboratory Animal Science.


Liu Q.,Shinshu University | Yao W.-D.,Beth Israel Deaconess Medical Center | Yao W.-D.,New England Primate Research Center | Suzuki T.,Shinshu University
Journal of Neurogenetics | Year: 2013

Postsynaptic membrane rafts are believed to play important roles in synaptic signaling, plasticity, and maintenance. We recently demonstrated the presence, at the electron microscopic level, of complexes consisting of membrane rafts and postsynaptic densities (PSDs) in detergent-resistant membranes (DRMs) prepared from synaptic plasma membranes (SPMs) (Suzuki et al., 2011, J Neurochem, 119, 64-77). To further explore these complexes, here we investigated the nature of the binding between purified SPM-DRMs and PSDs in vitro. In binding experiments, we used SPM-DRMs prepared after treating SPMs with n-octyl-β-d-glucoside, because at concentrations of 1.0% or higher it completely separates SPM-DRMs and PSDs, providing substantially PSD-free unique SPM-DRMs as well as DRM-free PSDs. PSD binding to PSD-free DRMs was identified by mass spectrometry, Western blotting, and electron microscopy. PSD proteins were not incorporated into SPMs, and significantly less PSD proteins were incorporated into DRMs prepared from liver membranes, providing in vitro evidence that binding of PSDs to DRMs is specific and suggestion of the presence of specific interacting molecules. These specific interactions may have important roles in synaptic development, function, and plasticity in vivo. In addition, the binding system we developed may be a good tool to search for binding molecules and binding mechanisms between PSDs and rafts. Copyright © 2013 Informa Healthcare USA, Inc.


Faraone S.V.,SUNY Upstate Medical University | Spencer T.J.,Harvard University | Madras B.K.,New England Primate Research Center | Madras B.K.,Harvard University | And 2 more authors.
Molecular Psychiatry | Year: 2014

Much psychiatric genetic research has focused on a 40-base pair variable number of tandem repeats (VNTR) polymorphism located in the 3′- untranslated region (3′UTR) of the dopamine active transporter (DAT) gene (SLC6A3). This variant produces two common alleles with 9- and 10-repeats (9R and 10R). Studies associating this variant with in vivo DAT activity in humans have had mixed results. We searched for studies using positron emission tomography (PET) or single-photon emission computed tomography (SPECT) to evaluate this association. Random effects meta-analyses assessed the association of the 3′UTR variant with DAT activity. We also evaluated heterogeneity among studies and evidence for publication bias. We found twelve studies comprising 511 subjects, 125 from PET studies and 386 from SPECT studies. The PET studies provided highly significant evidence that the 9R allele was associated with increased DAT activity in human adults. The SPECT studies were highly heterogeneous. As a group, they suggested no association between the 3′UTR polymorphism and DAT activity. When the analysis was limited to the most commonly used ligand, 123I β-CIT, stratification by affection status dramatically reduced heterogeneity and revealed a significant association of the 9R allele with increased DAT activity for healthy subjects. In humans, the 9R allele of the 3′UTR polymorphism of SLC6A3 regulates dopamine activity in the striatal brain regions independent of the presence of neuropsychiatric illness. Differences in study methodology account for the heterogeneous results across individual studies. © 2014 Macmillan Publishers Limited.


PubMed | New England Primate Research Center, Massachusetts General Hospital, University of Massachusetts Medical School, Auburn University and Brown University
Type: | Journal: Human gene therapy | Year: 2017

GM2 gangliosidoses, including Tay-Sachs disease (TSD) and Sandhoff disease (SD), are lysosomal storage disorders caused by deficiencies in -N-acetylhexosaminidase (Hex). Patients are afflicted primarily with progressive central nervous system dysfunction (CNS). Studies in mice, cats, and sheep have indicated safety and widespread distribution of Hex in the CNS after intracranial vector infusion of AAVrh8 vectors encoding species-specific Hex - or -subunits at a 1:1 ratio. Here we conducted a safety study in cynomolgus macaques (cm) modeling our previous animal studies with bilateral infusion in the thalamus as well as in left lateral ventricle of AAVrh8 vectors encoding cm Hex - and -subunits. Three doses (3.2 x 1012 vg (n=3), 3.2 x 1011 vg (n=2), or 1.1 x 1011 vg (n=2)) were tested with controls infused with vehicle (n=1), or transgene empty AAVrh8 vector at the highest dose (n=2). Most monkeys receiving AAVrh8-cmHex/ developed dyskinesias, ataxia, and loss of dexterity, with higher dose animals eventually becoming apathetic. Time to onset of symptoms was dose-dependent with the highest dose cohort producing symptoms within a month of infusion. One monkey in the lowest dose cohort was behaviorally asymptomatic but had MRI abnormalities in thalami. Histopathology was similar in all monkeys injected with AAVrh8-cmHex/ showing severe white and gray matter necrosis along the injection track, reactive vasculature, and the presence of neurons with granular eosinophilic material. Lesions were minimal to absent in both control cohorts. Despite cellular loss, a dramatic increase in Hex activity was measured in the thalamus and none of the animals presented with antibody titers against Hex. The high overexpression of Hex protein is likely to blame for this negative outcome and this study demonstrates the variations in safety profiles of AAVrh8-Hex / intracranial injection among different species despite encoding for self-proteins.

Loading New England Primate Research Center collaborators
Loading New England Primate Research Center collaborators