Time filter

Source Type

Scattoni M.L.,U.S. National Institutes of Health | Ricceri L.,Neurotoxicology and Neuroendocrinology Section | Crawley J.N.,U.S. National Institutes of Health
Genes, Brain and Behavior

BTBR T+tf/J (BTBR) is an inbred mouse strain that displays social deficits and repetitive behaviors analogous to the first and third diagnostic symptoms of autism. We previously reported an unusual pattern of ultrasonic vocalizations in BTBR pups that may represent a behavioral homolog to the second diagnostic symptom of autism, impaired communication. This study investigated the social and vocal repertoire in adult BTBR mice, to evaluate the role of ultrasonic vocalizations in multiple social situations at the adult stage of development. Three different social contexts were considered: male-female, male-male (resident-intruder) and female-female interactions. Behavioral responses and ultrasonic vocalizations were recorded for BTBR and for the highly social control strain C57BL/6J (B6). No episodes of overt fighting or mating were observed during the short durations of the three different experimental encounters. BTBR displayed lower levels of vocalizations and social investigation in all three social contexts as compared with B6. In addition, the correlation analyses between social investigation and ultrasonic vocalization emission rate showed that in B6 mice, the two variables were positively correlated in all the three different social settings, whereas in BTBR mice, the positive correlation was significant only in the male-female interactions. These findings strongly support the value of simultaneously recording two aspects of the mouse social repertoire: social motivation and bioacoustic communication. Moreover, our findings in adults are consistent with previous results in pups, showing an unusual vocal repertoire in BTBR as compared with B6. Genes, Brain and Behavior © 2010 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society. No claim to original US government works. Source

Squillace M.,CEINGE Biotecnologie Avanzate | Squillace M.,Italian Institute of Technology | Dodero L.,Italian Institute of Technology | Federici M.,University of Rome Tor Vergata | And 17 more authors.
Translational Psychiatry

Autism spectrum disorders (ASD) are neurodevelopmental conditions characterized by pronounced social and communication deficits and stereotyped behaviours. Recent psychosocial and neuroimaging studies have highlighted reward-processing deficits and reduced dopamine (DA) mesolimbic circuit reactivity in ASD patients. However, the neurobiological and molecular determinants of these deficits remain undetermined. Mouse models recapitulating ASD-like phenotypes could help generate hypotheses about the origin and neurophysiological underpinnings of clinically relevant traits. Here we used functional magnetic resonance imaging (fMRI), behavioural and molecular readouts to probe dopamine neurotransmission responsivity in BTBR T + Itpr3 tf /J mice (BTBR), an inbred mouse line widely used to model ASD-like symptoms owing to its robust social and communication deficits, and high level of repetitive stereotyped behaviours. C57BL/6J (B6) mice were used as normosocial reference comparators. DA reuptake inhibition with GBR 12909 produced significant striatal DA release in both strains, but failed to elicit fMRI activation in widespread forebrain areas of BTBR mice, including mesolimbic reward and striatal terminals. In addition, BTBR mice exhibited no appreciable motor responses to GBR 12909. DA D1 receptor-dependent behavioural and signalling responses were found to be unaltered in BTBR mice, whereas dramatic reductions in pre- and postsynaptic DA D2 and adenosine A2A receptor function was observed in these animals. Overall these results document profoundly compromised DA D2-mediated neurotransmission in BTBR mice, a finding that is likely to have a role in the distinctive social and behavioural deficits exhibited by these mice. Our results call for a deeper investigation of the role of dopaminergic dysfunction in mouse lines exhibiting ASD-like phenotypes, and possibly in ASD patient populations. © 2014 Macmillan Publishers Limited All rights reserved. Source

Manciocco A.,National Research Council Italy | Calamandrei G.,Neurotoxicology and Neuroendocrinology Section | Alleva E.,Behavioural Neuroscience Section

Environmental contaminants are associated with a wide spectrum of pathological effects. Temperature increase affects ambient distribution and toxicity of these chemicals in the water environment, representing a potentially emerging problem for aquatic species with short-, medium- and long-term repercussions on human health through the food chain. We assessed peer-reviewed literature, including primary studies, review articles and organizational reports available. We focused on studies concerning toxicity of environmental pollutants within a global warming scenario. Existing knowledge on the effects that the increase of water temperature in a contaminated situation has on physiological mechanisms of aquatic organisms is presented. Altogether we consider the potential consequences for the human beings due to fish and shellfish consumption. Finally, we propose an etho-toxicological approach to study the effects of toxicants in conditions of thermal increase, using aquatic organisms as experimental models under laboratory controlled conditions. © 2014 Elsevier Ltd. Source

Romano E.,Behavioural Neuroscience Section | Michetti C.,Neurotoxicology and Neuroendocrinology Section | Caruso A.,Neurotoxicology and Neuroendocrinology Section | Laviola G.,Behavioural Neuroscience Section | Scattoni M.L.,Neurotoxicology and Neuroendocrinology Section

Reelin is a large secreted extracellular matrix glycoprotein playing an important role in early neurodevelopment. Several genetic studies found an association between RELN gene and increased risk of autism suggesting that reelin deficiency may be a vulnerability factor in its etiology. Moreover, a reduced reelin expression has been observed in several brain regions of subjects with Autism Spectrum Disorders. Since a number of reports have documented presence of vocal and neuromotor abnormalities in patients with autism and suggested that these dysfunctions predate the onset of the syndrome, we performed a fine-grain characterization of the neonatal vocal and motor repertoire in reelin mutant mice to explore the developmental precursors of the disorder. Our findings evidence a general delay in motor and vocal development in heterozygous (50% reduced reelin) and reeler (lacking reelin gene) mutant mice. As a whole, an increased number of calls characterized heterozygous pup's emission. Furthermore, the typical ontogenetic peak in the number of calls characterizing wild-type pups on postnatal day 4 appeared slightly delayed in heterozygous pups (to day 6) and was quite absent in reeler littermates, which exhibited a flat profile during development. We also detected a preferential use of a specific call category (two-components) by heterozygous and reeler mice at postnatal days 6 and 8 as compared to their wild-type littermates. With regard to the analysis of spontaneous movements, a differential profile emerged early in development among the three genotypes. While only slight coordination difficulties are exhibited by heterozygous pups, all indices of motor development appear delayed in reeler mice. Overall, our results evidence a genotype-dependent deviation in ultrasonic vocal repertoire and a general delay in motor development in reelin mutant pups. © 2013 Romano et al. Source

Discover hidden collaborations