Coventry, United Kingdom
Coventry, United Kingdom

Time filter

Source Type

Hebeisen S.,BSys GmbH Analytics | Pires N.,BIAL | Loureiro A.I.,BIAL | Bonifacio M.J.,BIAL | And 6 more authors.
Neuropharmacology | Year: 2015

This study aimed at evaluating the effects of eslicarbazepine, carbamazepine (CBZ), oxcarbazepine (OXC) and lacosamide (LCM) on the fast and slow inactivated states of voltage-gated sodium channels (VGSC). The anti-epileptiform activity was evaluated in mouse isolated hippocampal slices. The anticonvulsant effects were evaluated in MES and the 6-Hz psychomotor tests. The whole-cell patch-clamp technique was used to investigate the effects of eslicarbazepine, CBZ, OXC and LCM on sodium channels endogenously expressed in N1E-115 mouse neuroblastoma cells. CBZ and eslicarbazepine exhibit similar concentration dependent suppression of epileptiform activity in hippocampal slices. In N1E-115 mouse neuroblastoma cells, at a concentration of 250 μM, the voltage dependence of the fast inactivation was not influenced by eslicarbazepine, whereas LCM, CBZ and OXC shifted the V0.5 value (mV) by -4.8, -12.0 and -16.6, respectively. Eslicarbazepine- and LCM-treated fast-inactivated channels recovered similarly to control conditions, whereas CBZ- and OXC-treated channels required longer pulses to recover. CBZ, eslicarbazepine and LCM shifted the voltage dependence of the slow inactivation (V0.5, mV) by -4.6, -31.2 and -53.3, respectively. For eslicarbazepine, LCM, CBZ and OXC, the affinity to the slow inactivated state was 5.9, 10.4, 1.7 and 1.8 times higher than to the channels in the resting state, respectively. In conclusion, eslicarbazepine did not share with CBZ and OXC the ability to alter fast inactivation of VGSC. Both eslicarbazepine and LCM reduce VGSC availability through enhancement of slow inactivation, but LCM demonstrated higher interaction with VGSC in the resting state and with fast inactivation gating. © 2014 Elsevier Ltd.


O'Hare E.,Queen's University of Belfast | Scopes D.I.C.,Senexis Ltd | Kim E.-M.,University of Ulster | Palmer P.,Queen's University of Belfast | And 7 more authors.
International Journal of Neuropsychopharmacology | Year: 2014

Prefibrillar assembly of amyloid-β (Aβ) is a major event underlying the development of neuropathology and dementia in Alzheimer's disease (AD). This study determined the neuroprotective properties of an orally bioavailable Aβ synaptotoxicity inhibitor, SEN1576. Binding of SEN1576 to monomeric Aβ 1-42 was measured using surface plasmon resonance. Thioflavin-T and MTT assays determined the ability of SEN1576 to block Aβ 1-42-induced aggregation and reduction in cell viability, respectively. In vivo long-term potentiation (LTP) determined effects on synaptic toxicity induced by intracerebroventricular (i.c.v.) injection of cell-derived Aβ oligomers. An operant behavioural schedule measured effects of oral administration following i.c.v. injection of Aβ oligomers in normal rats. SEN1576 bound to monomeric Aβ 1-42, protected neuronal cells exposed to Aβ 1-42, reduced deficits in in vivo LTP and behaviour. SEN1576 exhibits the necessary features of a drug candidate for further development as a disease modifying treatment for the early stages of AD-like dementia. © 2013 CINP.


O'Hare E.,Queen's University of Belfast | Scopes D.I.C.,Senexis Ltd | Kim E.-M.,University of Ulster | Palmer P.,Queen's University of Belfast | And 9 more authors.
Neurobiology of Aging | Year: 2013

Oligomers of beta-amyloid (Aβ) are implicated in the early memory impairment seen in Alzheimer's disease before to the onset of discernable neurodegeneration. Here, the capacity of a novel orally bioavailable, central nervous system-penetrating small molecule 5-aryloxypyrimidine, SEN1500, to prevent cell-derived (7PA2 [conditioned medium] CM) Aβ-induced deficits in synaptic plasticity and learned behavior was assessed. Biochemically, SEN1500 bound to Aβ monomer and oligomers, produced a reduction in thioflavin-T fluorescence, and protected a neuronal cell line and primary cortical neurons exposed to synthetic soluble oligomeric Aβ1-42. Electrophysiologically, SEN1500 alleviated the in vitro depression of long-term potentiation induced by both synthetic Aβ1-42 and 7PA2 CM, and alleviated the in vivo depression of long-term potentiation induced by 7PA2 CM, after systemic administration. Behaviorally, oral administration of SEN1500 significantly reduced memory-related deficits in operant responding induced after intracerebroventricular injection of 7PA2 CM. SEN1500 reduced cytotoxicity, acute synaptotoxicity, and behavioral deterioration after in vitro and in vivo exposure to synthetic Aβ and 7PA2 CM, and shows promise for development as a clinically viable disease-modifying Alzheimer's disease treatment. © 2013 Elsevier Inc.


Hopkins S.C.,Sunovion Pharmaceuticals | Zhao F.-Y.,Neurosolutions Ltd. | Bowen C.A.,Sunovion Pharmaceuticals | Fang X.,Neurosolutions Ltd. | And 8 more authors.
Journal of Pharmacology and Experimental Therapeutics | Year: 2013

Inhibition of D-amino acid oxidase (DAAO) activity is a potential target for the treatment of chronic pain. Here we characterized the effects of systemic administration of the DAAO inhibitor 4Hfuro[ 3,2-b]pyrrole-5-carboxylic acid (SUN) in rat models of neuropathic and inflammatory pain. Oral administration of SUN dose dependently attenuated tactile allodynia induced by ligation of the L5 spinal nerve (SNL) and similarly reversed thermal hyperalgesia produced by chronic constriction injury. In addition, SUN was efficacious against complete Freund's adjuvant-induced thermal hyperalgesia. In these models, maximal reversal of pain-related behaviors corresponded with maximum rates of increase in brain and plasma D-serine concentrations, indicative of full inhibition of DAAO activity. To investigate the possible site(s) of action, we recorded spontaneous nerve activity and mechanically evoked responses of central spinal cord dorsal horn neurons and compared these with spontaneous activity of peripheral dorsal root filaments in anesthetized SNL model animals. Oral SUN reduced spontaneous activity in both central and peripheral recordings at doses and pretreatment times that corresponded to reduced mechanical allodynia in behavioral experiments. After intravenous administration of SUN, the onset of action for this central effect was rapid (maximal effects within 30 minutes), but was abolished by severing afferent inputs to the dorsal horn. Overall, these results indicate that inhibition of DAAO in peripheral afferent spinal circuits reduced spontaneous neuronal activity to attenuate painrelated behaviors in rat models of neuropathic and inflammatory pain. Copyright © 2013 by The American Society for Pharmacology and Experimental Therapeutics.


Simonds S.E.,Monash University | Pryor J.T.,University of Warwick | Pryor J.T.,Neurosolutions Ltd. | Ravussin E.,Pennington Biomedical Research Center | And 18 more authors.
Cell | Year: 2014

Obesity is associated with increased blood pressure (BP), which in turn increases the risk of cardiovascular diseases. We found that the increase in leptin levels seen in diet-induced obesity (DIO) drives an increase in BP in rodents, an effect that was not seen in animals deficient in leptin or leptin receptors (LepR). Furthermore, humans with loss-of-function mutations in leptin and the LepR have low BP despite severe obesity. Leptin's effects on BP are mediated by neuronal circuits in the dorsomedial hypothalamus (DMH), as blocking leptin with a specific antibody, antagonist, or inhibition of the activity of LepR-expressing neurons in the DMH caused a rapid reduction of BP in DIO mice, independent of changes in weight. Re-expression of LepRs in the DMH of DIO LepR-deficient mice caused an increase in BP. These studies demonstrate that leptin couples changes in weight to changes in BP in mammalian species. © 2014 The Authors.


PubMed | Queen's University of Belfast, Monash University, Neurosolutions Ltd, University of Ulster and 3 more.
Type: | Journal: Neuropharmacology | Year: 2015

Bexarotene has been reported to reduce brain amyloid- (A) levels and to improve cognitive function in transgenic mouse models of Alzheimers disease (AD). Four groups failed to fully replicate the primary results but the original authors claimed overall support for the general conclusions. Because of its potential clinical importance, the current work studied the effects of bexarotene using two animal species and highly relevant paradigms. Rats were tested for the ability of bexarotene to prevent changes induced by an A challenge in the form intracerebroventricular (i.c.v) administration of 7PA2 conditioned medium (7PA2 CM) which contains high levels of A species. Bexarotene had no effect on the long-term potentiation of evoked extracellular field excitatory postsynaptic potentials induced by i.c.v. 7PA2 CM. It also had no effect following subcutaneous administration of 2, 5, 10 and 15 mg/kg on behavioral/cognitive impairment using an alternating-lever cyclic-ratio schedule of operant responding in the rat. The effects of bexarotene were further tested using the APPSwFILon, PSEN1*M146L*L286V transgenic mouse model of AD, starting at the time A deposits first begin to develop. Mice were sacrificed after 48 days of exposure to 100 mg bexarotene per day. No significant difference between test and control mice was found using a water-maze test, and no significant difference in the number of A deposits in cerebral cortex, using two different antibodies, was apparent. These results question the potential efficacy of bexarotene for AD treatment, even if instigated in the preclinical period prior to the onset of cognitive deficits reported for human AD. This article is part of the Special Issue entitled Synaptopathy--from Biology to Therapy.


PubMed | Clinical and Biological Research Unit, Lohocla Research Corporation, Colorado State University, Neurosolutions Ltd. and 3 more.
Type: | Journal: European journal of pharmacology | Year: 2016

Recent understanding of the systems that mediate complex disease states, has generated a search for molecules that simultaneously modulate more than one component of a pathologic pathway. Chronic pain syndromes are etiologically connected to functional changes (sensitization) in both peripheral sensory neurons and in the central nervous system (CNS). These functional changes involve modifications of a significant number of components of signal generating, signal transducing and signal propagating pathways. Our analysis of disease-related changes which take place in sensory neurons during sensitization led to the design of a molecule that would simultaneously inhibit peripheral NMDA receptors and voltage sensitive sodium channels. In the current report, we detail the selectivity of N,N-(diphenyl)-4-ureido-5,7-dichloro-2-carboxy-quinoline (DCUKA) for action at NMDA receptors composed of different subunit combinations and voltage sensitive sodium channels having different subunits. We show that DCUKA is restricted to the periphery after oral administration, and that circulating blood levels are compatible with its necessary concentrations for effects at the peripheral cognate receptors/channels that were assayed in vitro. Our results demonstrate that DCUKA, at concentrations circulating in the blood after oral administration, can modulate systems which are upregulated during peripheral sensitization, and are important for generating and conducting pain information to the CNS. Furthermore, we demonstrate that DCUKA ameliorates the hyperalgesia of chronic pain without affecting normal pain responses in neuropathic and inflammation-induced chronic pain models.


Amijee H.,Senexis Ltd | Amijee H.,University of Manchester | Bate C.,Lane College | Williams A.,Lane College | And 9 more authors.
Biochemistry | Year: 2012

Oligomeric forms of β-amyloid (Aβ) have potent neurotoxic activity and are the primary cause of neuronal injury and cell death in Alzheimer's disease (AD). Compounds that perturb oligomer formation or structure may therefore be therapeutic for AD. We previously reported that d-[(chGly)-(Tyr)-(chGly)-(chGly)-(mLeu)]-NH2 (SEN304) is able to inhibit Aβ aggregation and toxicity, shown primarily by thioflavin T fluorescence and MTT (Kokkoni, N. et al. (2006) N-Methylated peptide inhibitors of β-amyloid aggregation and toxicity. Optimisation of inhibitor structure. Biochemistry45, 9906-9918). Here we extensively characterize how SEN304 affects Aβ(1-42) aggregation and toxicity, using biophysical assays (thioflavin T, circular dichroism, SDS-PAGE, size exclusion chromatography, surface plasmon resonance, traveling wave ion mobility mass spectrometry, electron microscopy, ELISA), toxicity assays in cell culture (MTT and lactate dehydrogenase in human SH-SHY5Y cells, mouse neuronal cell death and synaptophysin) and long-term potentiation in a rat hippocampal brain slice. These data, with dose response curves, show that SEN304 is a powerful inhibitor of Aβ(1-42) toxicity, particularly effective at preventing Aβ inhibition of long-term potentiation. It can bind directly to Aβ(1-42), delay β-sheet formation and promote aggregation of toxic oligomers into a nontoxic form, with a different morphology that cannot bind thioflavin T. SEN304 appears to work by inducing aggregation, and hence removal, of Aβ oligomers. It is therefore a promising lead compound for Alzheimer's disease. © 2012 American Chemical Society.


PubMed | NeuroSolutions Ltd, University College Birmingham, Glaxosmithkline and University of Melbourne
Type: Journal Article | Journal: British journal of pharmacology | Year: 2016

The 5-HT7 receptor is a GPCR that is the target of a broad range of antidepressant and antipsychotic drugs. Various studies have demonstrated an ability of the 5-HT7 receptor to modulate glutamatergic neurotransmission and cognitive processes although the potential impact upon AMPA receptors has not been investigated directly. The purposes of the present study were to investigate a direct modulation of the GluA1 AMPA receptor subunit and determine how this might influence AMPA receptor function.The influence of pharmacological manipulation of the 5-HT7 receptor system upon phosphorylation of GluA1 subunits was assessed by Western blotting of fractionated proteins from hippocampal neurones in culture (or proteins resident at the neurone surface) and the functional impact assessed by electrophysiological recordings in rat hippocampus in vitro and in vivo.5-HT7 receptor activation increased cAMP and relative pCREB levels in cultures of rat hippocampal neurones along with an increase in phosphorylation (Ser845) of the GluA1 AMPA receptor subunit evident in whole neurone extracts and within the neurone surface compartment. Electrophysiological recordings in rat hippocampus demonstrated a 5-HT7 receptor-mediated increase in AMPA receptor-mediated neurotransmission in vitro and in vivo.The 5-HT7 receptor-mediated phosphorylation of the GluA1 AMPA receptor provides a molecular mechanism consistent with the 5-HT7 receptor-mediated increase in AMPA receptor-mediated neurotransmission.

Loading NeuroSolutions Ltd collaborators
Loading NeuroSolutions Ltd collaborators