Ballerup, Denmark
Ballerup, Denmark

NeuroSearch A/S is a Danish biotechnology company specializing in pharmaceuticals for treating diseases and disorders affecting the central nervous system . Wikipedia.


Time filter

Source Type

This invention relates to novel purinyl derivatives and their use as potassium channel modulating agents. Moreover the invention is directed to pharmaceutical compositions useful for the treatment or alleviation of diseases or disorders associated with the activity of potassium channels.


The present invention relates to the use of a particular group of carbonylamino derivatives for the treatment or alleviation of a disease or condition relating to certain inflammatory disorders.


The present application discloses novel 8-aza-bicyclo[3.2.1]oct-3-yloxy)-chromen-2-one derivatives useful as monoamine neurotransmitter re-uptake inhibitors. In other aspects the application discloses the use of these compounds, a method for therapy and to pharmaceutical compositions comprising these compounds.


The invention relates to a pharmaceutical composition comprising a monoamine neurotransmitter re-uptake inhibitor comprising a 2,3-disubstituted tropane moiety, or a tautomer, a pharmaceutically acceptable salt, solvate, or physiologically functional derivative thereof (), and at least one acetylcholinesterase inhibitor or a pharmaceutically acceptable salt, solvate, or physiologically functional derivative thereof (), and a pharmaceutically acceptable carrier or excipient, and optionally one or more other therapeutic ingredients.


This invention relates to novel 2,3-diamino-quinazolinone derivatives having medical utility, to use of the 2,3-diamino-quinazolinone derivatives of the invention for the manufacture of a medicament, to pharmaceutical compositions comprising the 2,3-diamino-quinazolinone derivatives of the invention, and to methods of treating a disorder, disease or a condition of a subject, which disorder, disease or condition is responsive to activation of K_(v)7 channels.


Patent
Neurosearch | Date: 2013-02-14

This invention relates to the use of pharmaceutical compositions comprising a therapeutically effective combination of Tesofensine and Metoprolol for preventing the cardiovascular side effects of Tesofensine, while leaving the robust inhibitory efficacy on food intake and body weight loss unaffected.


Patent
Neurosearch | Date: 2011-03-09

This invention relates to novel compounds useful as potassium channel modulators. More specifically the invention provides chemical compounds useful as modulators of SK_(Ca) and/or IK_(Ca) channels.


This invention relates to novel benzimidazole derivatives of formula (I), pharmaceutical compositions containing these compounds, and methods of treatment therewith. The compounds of the invention are useful in the treatment of central nervous system diseases and disorders which are responsive to modulation of the GABA_(A) receptor complex, and in particular for combating anxiety and related diseases.


This invention relates to novel purinyl derivatives and their use as potassium channel modulating agents. Moreover the invention is directed to pharmaceutical compositions useful for the treatment or alleviation of diseases or disorders associated with the activity of potassium channels.


Grant
Agency: Cordis | Branch: FP7 | Program: CP-IP | Phase: HEALTH-2011.2.2.1-2 | Award Amount: 24.91M | Year: 2012

The goal of this proposal (INMiND) is to carry out collaborative research on molecular mechanisms that link neuroinflammation with neurodegeneration in order to identify novel biological targets for activated microglia, which may serve for both diagnostic and therapeutic purposes, and to translate this knowledge into the clinic. The general objectives of INMiND are: (i) to identify novel mechanisms of regulation and function of microglia under various conditions (inflammatory stimuli; neurodegenerative and -regenerative model systems); (ii) to identify and implement new targets for activated microglia, which may serve for diagnostic (imaging) and therapeutic purposes; (iii) to design new molecular probes (tracers) for these novel targets and to implement and validate them in in vivo model systems and patients; (iv) to image and quantify modulated microglia activity in patients undergoing immune therapy for cognitive impairment and relate findings to clinical outcome. Within INMiND we bring together a group of excellent scientists with a proven background in efficiently accomplishing common scientific goals (FP6 project DiMI, www.dimi.eu), who belong to highly complementary fields of research (from genome-oriented to imaging scientists and clinicians), and who are dedicated to formulate novel image-guided therapeutic strategies for neuroinflammation related neurodegenerative diseases. The strength of this proposal is that, across Europe, it will coordinate research and training activities related to neuroinflammation, neurodegeneration/-regeneration and imaging with special emphasis on translating basic mechanisms into clinical applications that will provide health benefits for our aging population. With its intellectual excellence and its crucial mass the INMiND consortium will play a major role in the European Research Area and will gain European leadership in the creation of new image-guided therapy paradigms in patients with neurodegenerative diseases.

Loading Neurosearch collaborators
Loading Neurosearch collaborators