Entity

Time filter

Source Type

Cambridge, MA, United States

Branston S.D.,University College London | Wright J.,NeuroPhage Pharmaceuticals | Keshavarz-Moore E.,University College London
Biotechnology and Bioengineering | Year: 2015

The Ff filamentous bacteriophages show potential as a new class of therapeutics, displaying utility in materials science as well as pharmaceutical applications. These phages are produced by the infection of E. coli, a Gram-negative bacterium which unavoidably sheds endotoxins into the extracellular space during growth. Since endotoxin molecules are highly immunoreactive, separation from the phage product is of critical importance, particularly those developed for human therapeutic use. The properties of M13, one of the Ff group, present a purification challenge chiefly because the standard scalable method for endotoxin removal from proteins-anion exchange chromatography-is not applicable due to pI similarity between the particles. This article examines the potential of polyethylene glycol (PEG)-NaCl precipitation as a scalable method for the separation of endotoxins from phage M13. Precipitation of M13 by 2% (w/v) PEG 6 000, 500mM NaCl reduced endotoxin contamination of the phage product by 88%, but additional precipitation rounds did not maintain this proportional decrease. Dynamic light scattering was subsequently used to determine the effectiveness of a detergent to disassociate endotoxin molecules from M13. As a result, PEG-NaCl precipitation was supplemented with up to 2% (v/v) Triton X-100 to improve separation. A 5.7 log10 reduction in endotoxin concentration was achieved over three rounds of precipitation whilst retaining over 97% of the phage. This method compares favorably with the well-known ATPS (Triton X-114) technique for endotoxin removal from protein solutions. Biotechnol. Bioeng. 2015;112: 1714-1719. © 2015 Wiley Periodicals, Inc.


Papisov M.I.,Harvard University | Belov V.V.,Harvard University | Gannon K.S.,NeuroPhage Pharmaceuticals
Molecular Pharmaceutics | Year: 2013

Presently, there are no effective treatments for several diseases involving the CNS, which is protected by the blood-brain, blood-CSF, and blood-arachnoid barriers. Traversing any of these barriers is difficult, especially for macromolecular drugs and particulates. However, there is significant experimental evidence that large molecules can be delivered to the CNS through the cerebrospinal fluid (CSF). The flux of the interstitial fluid in the CNS parenchyma, as well as the macro flux of CSF in the leptomeningeal space, are believed to be generally opposite to the desirable direction of CNS-targeted drug delivery. On the other hand, the available data suggest that the layer of pia mater lining the CNS surface is not continuous, and the continuity of the leptomeningeal space (LMS) with the perivascular spaces penetrating into the parenchyma provides an unexplored avenue for drug transport deep into the brain via CSF. The published data generally do not support the view that macromolecule transport from the LMS to CNS is hindered by the interstitial and CSF fluxes. The data strongly suggest that leptomeningeal transport depends on the location and volume of the administered bolus and consists of four processes: (i) pulsation-assisted convectional transport of the solutes with CSF, (ii) active "pumping" of CSF into the periarterial spaces, (iii) solute transport from the latter to and within the parenchyma, and (iv) neuronal uptake and axonal transport. The final outcome will depend on the drug molecule behavior in each of these processes, which have not been studied systematically. The data available to date suggest that many macromolecules and nanoparticles can be delivered to CNS in biologically significant amounts (>1% of the administered dose); mechanistic investigation of macromolecule and particle behavior in CSF may result in a significantly more efficient leptomeningeal drug delivery than previously thought. © 2013 American Chemical Society.


Patent
NeuroPhage Pharmaceuticals | Date: 2012-11-28

The invention relates to agents and to pharmaceutical compositions for reducing the formation of amyloid and/or for promoting the disaggregation of amyloid proteins. The compositions may also be used to detect amyloid.


Patent
NeuroPhage Pharmaceuticals | Date: 2015-07-13

The invention relates to agents and to pharmaceutical compositions for reducing the formation of amyloid and/or for promoting the disaggregation of amyloid proteins. The compositions may also be used to detect amyloid.


Trademark
NeuroPhage Pharmaceuticals | Date: 2016-06-24

Pharmaceutical preparations; pharmaceutical preparations for use in the prevention and treatment of central nervous system diseases and disorders.

Discover hidden collaborations