Mountain View, CA, United States
Mountain View, CA, United States

Time filter

Source Type

Patent
NeuroPace | Date: 2017-01-09

A burr hole cover is configured to be recessed in a burr hole formed in a patient and includes a base and a cap provided with complementary features to allow a portion of a medical device, such as a brain lead, to be situated in the burr hole cover and then secured by rotation of the cap relative to the base. The features include channels on the base and matching cut-outs on the cap, and slots and locking pockets on the base that are configured to be aligned with locking tabs and locking protrusions on the cap. Because the burr hole cover is recessed in the burr hole, the medical device can extend proximally of the burr hole at the level of the cranium. A bottom surface of the cap may be provided with guides for the lead extending distally in towards the brain.


Objectives: This multicenter, double-blind, randomized controlled trial assessed the safety and effectiveness of responsive cortical stimulation as an adjunctive therapy for partial onset seizures in adults with medically refractory epilepsy. Methods: A total of 191 adults with medically intractable partial epilepsy were implanted with a responsive neurostimulator connected to depth or subdural leads placed at 1 or 2 predetermined seizure foci. The neurostimulator was programmed to detect abnormal electrocorticographic activity. One month after implantation, subjects were randomized 1:1 to receive stimulation in response to detections (treatment) or to receive no stimulation (sham). Efficacy and safety were assessed over a 12-week blinded period and a subsequent 84-week open-label period during which all subjects received responsive stimulation. Results: Seizures were significantly reduced in the treatment (-37.9%, n = 97) compared to the sham group (-17.3%, n = 94; p = 0.012) during the blinded period and there was no difference between the treatment and sham groups in adverse events. During the open-label period, the seizure reduction was sustained in the treatment group and seizures were significantly reduced in the sham group when stimulation began. There were significant improvements in overall quality of life (p < 0.02) and no deterioration in mood or neuropsychological function. Conclusions: Responsive cortical stimulation reduces the frequency of disabling partial seizures, is associated with improvements in quality of life, and is well-tolerated with no mood or cognitive effects. Responsive stimulation may provide another adjunctive treatment option for adults with medically intractable partial seizures. Classification of evidence: This study provides Class I evidence that responsive cortical stimulation is effective in significantly reducing seizure frequency for 12 weeks in adults who have failed 2 or more antiepileptic medication trials,3or more seizures per month, and 1 or 2 seizure foci. © 2011 by AAN Enterprises, Inc.


An initial set of parameters for operating one or more detection tools is automatically derived and subsequently adjusted so that each detection tool is more or less sensitive to signal characteristics in a region of interest. Detection tool(s) may be applied to physiological signals sensed from a patient (such as EEG signals) and may be configured to run in an implanted medical device that is programmable with the parameters to look for rhythmic activity, spiking, and power changes in the sensed signals, etc. A detection tool may be selected and parameter values derived in a logical sequence and/or in pairs based on a graphical representation of an activity type which may be selected by a user, for example, by clicking and dragging on the graphic via a GUI. Displayed simulations allow a user to assess what will be detected with a derived parameter set and then to adjust the sensitivity of the set or start over as desired.


Patent
NeuroPace | Date: 2016-06-09

Systems, methods and devices are disclosed for directing and focusing signals to the brain for neuromodulation and for directing and focusing signals or other energy from the brain for measurement, heat transfer and imaging. An aperture in the skull and/or a channel device implantable in the skull can be used to facilitate direction and focusing. Treatment and diagnosis of multiple neurological conditions may be facilitated with the disclosed systems, methods and devices.


An implantable neurostimulator system adapted to provide therapy for various neurological disorders is capable of varying therapy delivery strategies based on the context, physiological or otherwise, into which the therapy is to be delivered. Responsive and scheduled therapies can be varied depending on various sensor measurements, calculations, inferences, and device states (including elapsed times and times of day) to deliver an appropriate course of therapy under the circumstances.


Patent
NeuroPace | Date: 2016-08-16

A surgical accessory for use in implanting a medical device in a cranial bone of a human patient may serve as a template during a craniectomy for cutting a hole in which a ferrule for a medical device may be situated and then secured. The surgical accessory is dimensioned to allow a surgeon to gauge how far above the outer surface of the cranium the medical device will extend once the ferrule has been secured to the outer bone table and the medical device has been cradled in the ferrule.


A method and system is described for ensuring a state of an active implantable medical device based on the presence and persistence of a magnetic field. The output of a magnetic field sensor is monitored. The active implantable medical device is maintained in a first state, for so long as the presence of a magnetic field is detected by the magnetic field sensor, until a first interval is surpassed. If the first interval is surpassed, then a determination is made as to whether a second interval has been surpassed. If it is determined that the second interval has not been surpassed, then the active implantable medical device is transitioned into a second state. If it is determined that the second interval has been surpassed, then it is ensured that the active implantable medical device is in a predetermined one of the first and second states.


A current management system for use in the stimulation output stage of a neurostimulation system can be programmed to steer different amounts of current through different stimulation electrodes to vary how strongly the tissue adjacent each electrode is stimulated during a particular programmed stimulation episode. An stimulation electrode drive circuit associated with each electrode that is available for stimulation allows independent control of the flow of current through that electrode. A reference electrode is provided in the circuit to source or sink current as necessary to balance the currents going into and out of the patient, so that no stimulation electrode is required to serve that purpose. More specifically, by configuring the circuit to maintain a constant potential at the reference electrode (e.g., a potential that is approximately half way between a top and bottom voltage rail), the reference electrode will source or sink currents as necessary to cause the net current flow into the patient to be equal to the net current flowing out of the patient, thus satisfying Kirchhoffs current law.


A method and system is described for ensuring a state of an active implantable medical device based on the presence and persistence of a magnetic field. The output of a magnetic field sensor is monitored. The active implantable medical device is maintained in a first state, for so long as the presence of a magnetic field is detected by the magnetic field sensor, until a first interval is surpassed. If the first interval is surpassed, then a determination is made as to whether a second interval has been surpassed. If it is determined that the second interval has not been surpassed, then the active implantable medical device is transitioned into a second state. If it is determined that the second interval has been surpassed, then it is ensured that the active implantable medical device is in a predetermined one of the first and second states.


A system for treating neurological conditions by low-frequency time varying electrical stimulation includes an electrical device for applying such low-frequency energy, in a range below approximately 10 Hz, to the patients brain tissue. An implantable embodiment applies direct electrical stimulation to electrodes implanted in or on the patients brain, while a non-invasive embodiment causes a magnetic field to induce electrical currents in the patients brain.

Loading NeuroPace collaborators
Loading NeuroPace collaborators