Entity

Time filter

Source Type


Trojsi F.,The Second University of Naples | Esposito F.,The Second University of Naples | Esposito F.,University of Salerno | de Stefano M.,The Second University of Naples | And 9 more authors.
Neurobiology of Aging | Year: 2015

Amyotrophic lateral sclerosis (ALS) and behavioral variant frontotemporal dementia (bvFTD) lie on a clinical, pathologic, and genetic continuum. Neuroimaging techniques have proven to be potentially useful to unravel the shared features of these syndromes. Using resting-state functional magnetic resonance imaging (RS-fMRI), we investigated functional connectivity of brain networks in 15 ALS and 15 bvFTD patients in early stages of disease and 15 healthy controls, looking expressly for connectivity pattern divergence or overlap between the 2 disorders. Compared with controls, we found decreased RS-fMRI signals within sensorimotor, right frontoparietal, salience, and executive networks in both patient groups. Within the default mode network (DMN), divergent connectivity patterns were observed, with RS-fMRI signals in the posterior cingulate cortex enhanced in bvFTD patients and suppressed in ALS patients. Our findings confirm that ALS and bvFTD not only broadly share common RS-fMRI connectivity patterns, probably representing different phenotypical expressions of the same neurodegenerative process, but also differ in the DMN, probably reflecting a different stage of neurodegeneration. © 2015 Elsevier Inc. Source


Tedeschi G.,The Second University of Naples | Tedeschi G.,Neurological Institute for Diagnosis and Care Hermitage Capodimonte | Russo A.,The Second University of Naples | Russo A.,Neurological Institute for Diagnosis and Care Hermitage Capodimonte | Tessitore A.,The Second University of Naples
Expert Review of Neurotherapeutics | Year: 2013

Advances in imaging have provided further insights into the complex migraine pathophysiology. Functional neuroimaging by means of PET and functional MRI studies have addressed crucial migraine-related issues, improving our understanding of the circuitry that may be involved in the generation, maintenance and recurrence of pain symptoms in migraine. In the last few years, a growing body of imaging literature has also explored pathophysiology of associated migraine symptoms. Of great interest will be the use of advanced imaging techniques to elucidate neural correlates of migraine prodromal, in order to identify clinical subgroups of migrainous subjects. However, the interpretation of the biological significance of these various functional changes could remain incomplete without a combination of expanding genomic information about neurochemical pathways and genetic polymorphisms linked to specific migraine subtypes. Hopefully, a more detailed picture of the migraine neurobiology will emerge from future neuroimaging studies, which may eventually lead to better and more rational treatments. © 2013 Expert Reviews Ltd. Source


Caiazzo G.,The Second University of Naples | Corbo D.,The Second University of Naples | Corbo D.,Neurological Institute for Diagnosis and Care Hermitage Capodimonte | Trojsi F.,The Second University of Naples | And 7 more authors.
Journal of Neurology | Year: 2014

Diffusion tensor imaging (DTI) has become a useful tool for investigating early white matter (WM) abnormalities in motor neuron disease. Furthermore, fiber tracking packages that apply multi-tensorial algorithms, such as q-ball imaging (QBI), have been proposed as alternative approaches to overcome DTI limitations in depicting fiber tracts with different orientations within the same voxel. We explored motor and extra-motor WM tract abnormalities in phenotypically heterogeneous amyotrophic lateral sclerosis (ALS) cases aiming to establish a consistent QBI-based WM signature of disease. We performed a whole-brain, QBI tract-based spatial statistics analysis with deterministic tractography of genu, body and splenium of corpus callosum (CC) and corticospinal tracts (CST) in 20 ALS patients (12 classical and 8 lower motor neuron variants) compared to 20 healthy controls. Mean tract length, fiber volume and density, and generalized fractional anisotropy were extracted and related to clinical indices of pyramidal impairment (upper motor neuron score), disease disability (ALS functional rating scale-revised) and progression. ALS patients showed significantly decreased fiber density and volume, and increased tract length in all regions of CC and left CST (p < 0.05, corrected). In CC body, pyramidal impairment was inversely correlated to fiber density (p = 0.01), while in CC splenium, clinical disability (p = 0.01) and progression (p = 0.02) were inversely correlated to tract length. Our findings further suggest that QBI tractography might represent a promising approach for investigating structural alterations in neurodegenerative diseases and confirm that callosal involvement is a consistent feature of most ALS variants, significantly related to both pyramidal dysfunction and disease disability. © 2013 Springer-Verlag Berlin Heidelberg. Source


Trojsi F.,The Second University of Naples | Trojsi F.,Neurological Institute for Diagnosis and Care Hermitage Capodimonte | Trojsi F.,Magnetic Resonance Imaging Center | Monsurr M.R.,The Second University of Naples | And 6 more authors.
Neural Plasticity | Year: 2012

Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disease principally affecting motor neurons. Besides motor symptoms, a subset of patients develop cognitive disturbances or even frontotemporal dementia (FTD), indicating that ALS may also involve extramotor brain regions. Both neuropathological and neuroimaging findings have provided further insight on the widespread effect of the neurodegeneration on brain connectivity and the underlying neurobiology of motor neurons degeneration. However, associated effects on motor and extramotor brain networks are largely unknown. Particularly, neuropathological findings suggest that ALS not only affects the frontotemporal network but rather is part of a wide clinicopathological spectrum of brain disorders known as TAR-DNA binding protein 43 (TDP-43) proteinopathies. This paper reviews the current state of knowledge concerning the neuropsychological and neuropathological sequelae of TDP-43 proteinopathies, with special focus on the neuroimaging findings associated with cognitive change in ALS. Copyright © 2012 Francesca Trojsi et al. Source


Trojsi F.,The Second University of Naples | Trojsi F.,Neurological Institute for Diagnosis and Care Hermitage Capodimonte | Monsurro M.R.,The Second University of Naples | Monsurro M.R.,Neurological Institute for Diagnosis and Care Hermitage Capodimonte | And 2 more authors.
International Journal of Molecular Sciences | Year: 2013

There is a broad scientific consensus that amyotrophic lateral sclerosis (ALS), a fatal neuromuscular disease, is caused by gene-environment interactions. In fact, given that only about 10% of all ALS diagnosis has a genetic basis, gene-environmental interaction may give account for the remaining percentage of cases. However, relatively little attention has been paid to environmental and lifestyle factors that may trigger the cascade of motor neuron degeneration leading to ALS, although exposure to chemicals-including lead and pesticides-agricultural environments, smoking, intense physical activity, trauma and electromagnetic fields have been associated with an increased risk of ALS. This review provides an overview of our current knowledge of potential toxic etiologies of ALS with emphasis on the role of cyanobacteria, heavy metals and pesticides as potential risk factors for developing ALS. We will summarize the most recent evidence from epidemiological studies and experimental findings from animal and cellular models, revealing that potential causal links between environmental toxicants and ALS pathogenesis have not been fully ascertained, thus justifying the need for further research. © 2013 by the authors; licensee MDPI, Basel, Switzerland. Source

Discover hidden collaborations