Neurological Cancer Research

New Orleans, LA, United States

Neurological Cancer Research

New Orleans, LA, United States
SEARCH FILTERS
Time filter
Source Type

Wilk A.,Neurological Cancer Research | Wilk A.,Stanley ott Cancer Center | Waligorska A.,Neurological Cancer Research | Waligorska A.,Stanley ott Cancer Center | And 5 more authors.
PLoS ONE | Year: 2012

Cisplatin is one of the most widely used and effective anticancer drugs against solid tumors including cerebellar tumor of the childhood, Medulloblastoma. However, cancer cells often develop resistance to cisplatin, which limits therapeutic effectiveness of this otherwise effective genotoxic drug. In this study, we demonstrate that human medulloblastoma cell lines develop acute resistance to cisplatin in the presence of estrogen receptor (ER) antagonist, ICI182,780. This unexpected finding involves a switch from the G2/M to G1 checkpoint accompanied by decrease in ATM/Chk2 and increase in ATR/Chk1 phosphorylation. We have previously reported that ERβ, which is highly expressed in medulloblastomas, translocates insulin receptor substrate 1 (IRS-1) to the nucleus, and that nuclear IRS-1 binds to Rad51 and attenuates homologous recombination directed DNA repair (HRR). Here, we demonstrate that in the presence of ICI182,780, cisplatin-treated medulloblastoma cells show recruitment of Rad51 to the sites of damaged DNA and increase in HRR activity. This enhanced DNA repair during the S phase preserved also clonogenic potential of medulloblastoma cells treated with cisplatin. In conclusion, inhibition of ERβ considered as a supplemental anticancer therapy, has been found to interfere with cisplatin-induced cytotoxicity in human medulloblastoma cell lines. © 2012 Wilk et al.


Panigrahi R.,Tulane University | Chandra P.K.,Tulane University | Ferraris P.,Tulane University | Kurt R.,Tulane University | And 8 more authors.
Journal of Virology | Year: 2015

Ribavirin (RBV) continues to be an important component of interferon-free hepatitis C treatment regimens, as RBV alone does not inhibit hepatitis C virus (HCV) replication effectively; the reason for this ineffectiveness has not been established. In this study, we investigated the RBV resistance mechanism using a persistently HCV-infected cell culture system. The antiviral activity of RBV against HCV was progressively impaired in the persistently infected culture, whereas interferon lambda 1 (IFN-λ1), a type III IFN, showed a strong antiviral response and induced viral clearance. We found that HCV replication in persistently infected cultures induces an autophagy response that impairs RBV uptake by preventing the expression of equilibrative nucleoside transporter 1 (ENT1). The Huh-7.5 cell line treated with an autophagy inducer, Torin 1, downregulated membrane expression of ENT1 and terminated RBV uptake. In contrast, the autophagy inhibitors hydroxychloroquine (HCQ), 3-methyladenine (3-MA), and bafilomycin A1 (BafA1) prevented ENT1 degradation and enhanced RBV antiviral activity. The HCV-induced autophagy response, as well as treatment with Torin 1, degrades clathrin heavy chain expression in a hepatoma cell line. Reduced expression of the clathrin heavy chain by HCV prevents ENT1 recycling to the plasma membrane and forces ENT1 to the lysosome for degradation. This study provides a potential mechanism for the impairment of RBV antiviral activity in persistently HCV-infected cell cultures and suggests that inhibition of the HCV-induced autophagy response could be used as a strategy for improving RBV antiviral activity against HCV infection. © 2015, American Society for Microbiology.


Wilk A.,Neurological Cancer Research | Wilk A.,Stanley ott Cancer Center | Wilk A.,Health science Center | Wyczechowska D.,Neurological Cancer Research | And 22 more authors.
Molecular and Cellular Biology | Year: 2015

Fenofibrate (FF) is a common lipid-lowering drug and a potent agonist of the peroxisome proliferator-activated receptor alpha (PPARα). FF and several other agonists of PPARα have interesting anticancer properties, and our recent studies demonstrate that FF is very effective against tumor cells of neuroectodermal origin. In spite of these promising anticancer effects, the molecular mechanism(s) of FF-induced tumor cell toxicity remains to be elucidated. Here we report a novel PPARα-independent mechanism explaining FF's cytotoxicity in vitro and in an intracranial mouse model of glioblastoma. The mechanism involves accumulation of FF in the mitochondrial fraction, followed by immediate impairment of mitochondrial respiration at the level of complex I of the electron transport chain. This mitochondrial action sensitizes tested glioblastoma cells to the PPARα-dependent metabolic switch from glycolysis to fatty acid β-oxidation. As a consequence, prolonged exposure to FF depletes intracellular ATP, activates the AMP-activated protein kinase-mammalian target of rapamycin-autophagy pathway, and results in extensive tumor cell death. Interestingly, autophagy activators attenuate and autophagy inhibitors enhance FF-induced glioblastoma cytotoxicity. Our results explain the molecular basis of FF-induced glioblastoma cytotoxicity and reveal a new supplemental therapeutic approach in which intracranial infusion of FF could selectively trigger metabolic catastrophe in glioblastoma cells. © 2015, American Society for Microbiology.


PubMed | Neurological Cancer Research, Stanley ott Cancer Center, Agricultural University of Krakow, Health science Center and University of Louisville
Type: Journal Article | Journal: Molecular and cellular biology | Year: 2014

Fenofibrate (FF) is a common lipid-lowering drug and a potent agonist of the peroxisome proliferator-activated receptor alpha (PPAR). FF and several other agonists of PPAR have interesting anticancer properties, and our recent studies demonstrate that FF is very effective against tumor cells of neuroectodermal origin. In spite of these promising anticancer effects, the molecular mechanism(s) of FF-induced tumor cell toxicity remains to be elucidated. Here we report a novel PPAR-independent mechanism explaining FFs cytotoxicity in vitro and in an intracranial mouse model of glioblastoma. The mechanism involves accumulation of FF in the mitochondrial fraction, followed by immediate impairment of mitochondrial respiration at the level of complex I of the electron transport chain. This mitochondrial action sensitizes tested glioblastoma cells to the PPAR-dependent metabolic switch from glycolysis to fatty acid -oxidation. As a consequence, prolonged exposure to FF depletes intracellular ATP, activates the AMP-activated protein kinase-mammalian target of rapamycin-autophagy pathway, and results in extensive tumor cell death. Interestingly, autophagy activators attenuate and autophagy inhibitors enhance FF-induced glioblastoma cytotoxicity. Our results explain the molecular basis of FF-induced glioblastoma cytotoxicity and reveal a new supplemental therapeutic approach in which intracranial infusion of FF could selectively trigger metabolic catastrophe in glioblastoma cells.


PubMed | Ryerson University, Neurological Cancer Research, Chiba University and Tulane University
Type: Journal Article | Journal: Journal of virology | Year: 2014

Ribavirin (RBV) continues to be an important component of interferon-free hepatitis C treatment regimens, as RBV alone does not inhibit hepatitis C virus (HCV) replication effectively; the reason for this ineffectiveness has not been established. In this study, we investigated the RBV resistance mechanism using a persistently HCV-infected cell culture system. The antiviral activity of RBV against HCV was progressively impaired in the persistently infected culture, whereas interferon lambda 1 (IFN-1), a type III IFN, showed a strong antiviral response and induced viral clearance. We found that HCV replication in persistently infected cultures induces an autophagy response that impairs RBV uptake by preventing the expression of equilibrative nucleoside transporter 1 (ENT1). The Huh-7.5 cell line treated with an autophagy inducer, Torin 1, downregulated membrane expression of ENT1 and terminated RBV uptake. In contrast, the autophagy inhibitors hydroxychloroquine (HCQ), 3-methyladenine (3-MA), and bafilomycin A1 (BafA1) prevented ENT1 degradation and enhanced RBV antiviral activity. The HCV-induced autophagy response, as well as treatment with Torin 1, degrades clathrin heavy chain expression in a hepatoma cell line. Reduced expression of the clathrin heavy chain by HCV prevents ENT1 recycling to the plasma membrane and forces ENT1 to the lysosome for degradation. This study provides a potential mechanism for the impairment of RBV antiviral activity in persistently HCV-infected cell cultures and suggests that inhibition of the HCV-induced autophagy response could be used as a strategy for improving RBV antiviral activity against HCV infection.The results from this work will allow a review of the competing theories of antiviral therapy development in the field of HCV virology. Ribavirin (RBV) remains an important component of interferon-free hepatitis C treatment regimens. The reason why RBV alone does not inhibit HCV replication effectively has not been established. This study provides a potential mechanism for why RBV antiviral activity is impaired in persistently HCV-infected cell cultures and suggests that inhibition of the HCV-induced autophagy response could be used as a strategy to increase RBV antiviral activity against HCV infection. Therefore, it is anticipated that this work would generate a great deal of interest, not only among virologists but also among the general public.


Kurt R.,Tulane University | Chandra P.K.,Tulane University | Aboulnasr F.,Tulane University | Panigrahi R.,Tulane University | And 6 more authors.
PLoS ONE | Year: 2015

Background: Hepatic steatosis is a risk factor for both liver disease progression and an impaired response to interferon alpha (IFN-α)-based combination therapy in chronic hepatitis C virus (HCV) infection. Previously, we reported that free fatty acid (FFA)-treated HCV cell culture induces hepatocellular steatosis and impairs the expression of interferon alpha receptor-1 (IFNAR1), which is why the antiviral activity of IFN-α against HCV is impaired. Aim: To investigate the molecular mechanism by which IFNAR1 expression is impaired in HCV cell culture with or without free fatty acid-treatment. Method: HCV-infected Huh 7.5 cells were cultured with or without a mixture of saturated (palmitate) and unsaturated (oleate) long-chain free fatty acids (FFA). Intracytoplasmic fat accumulation in HCV-infected culture was visualized by oil red staining. Clearance of HCV in FFA cell culture treated with type I IFN (IFN-α) and Type III IFN (IFN-λ) was determined by Renilla luciferase activity, and the expression of HCV core was determined by immunostaining. Activation of Jak-Stat signaling in the FFA-treated HCV culture by IFN-α alone and IFN-λ alone was examined by Western blot analysis and confocal microscopy. Lysosomal degradation of IFNAR1 by chaperone-mediated autophagy (CMA) in the FFA-treated HCV cell culture model was investigated. Results: FFA treatment induced dose-dependent hepatocellular steatosis and lipid droplet accumulation in HCV-infected Huh-7.5 cells. FFA treatment of infected culture increased HCV replication in a concentration-dependent manner. Intracellular lipid accumulation led to reduced Stat phosphorylation and nuclear translocation, causing an impaired IFN-α antiviral response and HCV clearance. Type III IFN (IFN-λ), which binds to a separate receptor, induces Stat phosphorylation, and nuclear translocation as well as antiviral clearance in FFA-treated HCV cell culture. We show here that the HCV-induced autophagy response is increased in FFA-treated cell culture. Pharmacological inhibitors of lysosomal degradation, such as ammonium chloride and bafilomycin, prevented IFNAR1 degradation in FFA-treated HCV cell culture. Activators of chaperone-mediated autophagy, including 6-aminonicotinamide and nutrient starvation, decreased IFNAR1 levels in Huh-7.5 cells. Coimmunoprecipitation, colocalization and siRNA knockdown experiments revealed that IFNAR1 but not IFNLR1 interacts with HSC70 and LAMP2A, which are core components of chaperone-mediated autophagy (CMA). Conclusion: Our study presents evidence indicating that chaperone-mediated autophagy targets IFNAR1 degradation in the lysosome in FFA-treated HCV cell culture. These results provide a mechanism for why HCV induced autophagy response selectively degrades type I but not the type III IFNAR1. © 2015 Kurt et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Reiss K.,Neurological Cancer Research | Del Valle L.,Neurological Cancer Research | Lassak A.,Neurological Cancer Research | Trojanek J.,Childrens Health Institute
Journal of Cellular Physiology | Year: 2012

The family of insulin receptor substrates (IRS) consists of four proteins (IRS-1-IRS-4), which were initially characterized as typical cytosolic adaptor proteins involved in insulin receptor (IR) and insulin-like growth factor I receptor (IGF-IR) signaling. The first cloned and characterized member of the IRS family, IRS-1, has a predicted molecular weight of 132kDa, however, as a result of its extensive serine phosphorylation it separates on a SDS gel as a band of approximately 160-185kDa. In addition to its metabolic and growth-promoting functions, IRS-1 is also suspected to play a role in malignant transformation. The mechanism by which IRS-1 supports tumor growth is not fully understood, and the argument that IRS-1 merely amplifies the signal from the IGF-1R and/or IR requires further investigation. Almost a decade ago, we reported the presence of nuclear IRS-1 in medulloblastoma clinical samples, which express viral oncoprotein, large T-antigen of human polyomavirus JC (JCV T-antigen). This first demonstration of nuclear IRS-1 was confirmed by several other laboratories. Nuclear IRS-1 was also detected by cells expressing the SV40 T-antigen, v-Src, in immortalized fibroblasts stimulated with IGF-I, in hepatocytes, 32D cells, and in an osteosarcoma cell line. More recently, nuclear IRS-1 was detected in breast cancer cells in association with estrogen receptor alpha (ERα), and in JC virus negative medulloblastoma cells expressing estrogen receptor beta (ERβ), further implicating nuclear IRS-1 in cellular transformation. Here, we discuss how nuclear IRS-1 acting on DNA repair fidelity, transcriptional activity, and cell growth can support tumor development and progression. © 2011 Wiley Periodicals, Inc.


PubMed | Neurological Cancer Research
Type: Journal Article | Journal: Journal of cellular physiology | Year: 2012

The family of insulin receptor substrates (IRS) consists of four proteins (IRS-1-IRS-4), which were initially characterized as typical cytosolic adaptor proteins involved in insulin receptor (IR) and insulin-like growth factor I receptor (IGF-IR) signaling. The first cloned and characterized member of the IRS family, IRS-1, has a predicted molecular weight of 132 kDa, however, as a result of its extensive serine phosphorylation it separates on a SDS gel as a band of approximately 160-185 kDa. In addition to its metabolic and growth-promoting functions, IRS-1 is also suspected to play a role in malignant transformation. The mechanism by which IRS-1 supports tumor growth is not fully understood, and the argument that IRS-1 merely amplifies the signal from the IGF-1R and/or IR requires further investigation. Almost a decade ago, we reported the presence of nuclear IRS-1 in medulloblastoma clinical samples, which express viral oncoprotein, large T-antigen of human polyomavirus JC (JCV T-antigen). This first demonstration of nuclear IRS-1 was confirmed by several other laboratories. Nuclear IRS-1 was also detected by cells expressing the SV40 T-antigen, v-Src, in immortalized fibroblasts stimulated with IGF-I, in hepatocytes, 32D cells, and in an osteosarcoma cell line. More recently, nuclear IRS-1 was detected in breast cancer cells in association with estrogen receptor alpha (ER), and in JC virus negative medulloblastoma cells expressing estrogen receptor beta (ER), further implicating nuclear IRS-1 in cellular transformation. Here, we discuss how nuclear IRS-1 acting on DNA repair fidelity, transcriptional activity, and cell growth can support tumor development and progression.


In HIV patients, antiretroviral medications trigger metabolic abnormalities, including insulin resistance. In addition, the inflammatory cytokine tumor necrosis factor- (TNF), which is elevated in human immunodeficiency virus encephalitis (HIVE), also induces insulin resistance and inflicts neuronal damage in vitro. In differentiated PC12 cells and rat cortical neurons, high glucose (HG; 25 mM) triggers reactive oxygen species (ROS) accumulation, contributing to the retraction of neuronal processes, with only a minimal involvement of neuronal apoptosis. In the presence of TNF, HG-treated neurons undergo massive apoptosis. Because mammalian homolog of the Forkhead family of transcription factors, Forkhead box O transcription factor 3a (FOXO3a), controls ROS metabolism, we asked whether FOXO3a could affect the fate of differentiated neurons in the paradigm of HIVE. We observed FOXO3a nuclear translocation in HG-treated neuronal cultures, accompanied by partial loss of mitochondrial potential and gradual retraction of neuronal processes. Addition of TNF to HG-treated neurons increased expression of the FOXO-dependent proapoptotic gene Bim, which resulted in extensive apoptotic death. Insulin-like growth factor-I (IGF-I) significantly lowered intracellular ROS, which was accompanied by IGF-I-mediated FOXO3a nuclear export and decrease in its transcriptional activity. The clinical relevance of these findings is supported by detection of nuclear FOXO3a in TUNEL-positive cortical neurons from HIVE, especially in brain areas characterized by elevated TNF.


PubMed | Neurological Cancer Research
Type: Journal Article | Journal: PloS one | Year: 2012

Cisplatin is one of the most widely used and effective anticancer drugs against solid tumors including cerebellar tumor of the childhood, Medulloblastoma. However, cancer cells often develop resistance to cisplatin, which limits therapeutic effectiveness of this otherwise effective genotoxic drug. In this study, we demonstrate that human medulloblastoma cell lines develop acute resistance to cisplatin in the presence of estrogen receptor (ER) antagonist, ICI182,780. This unexpected finding involves a switch from the G2/M to G1 checkpoint accompanied by decrease in ATM/Chk2 and increase in ATR/Chk1 phosphorylation. We have previously reported that ER, which is highly expressed in medulloblastomas, translocates insulin receptor substrate 1 (IRS-1) to the nucleus, and that nuclear IRS-1 binds to Rad51 and attenuates homologous recombination directed DNA repair (HRR). Here, we demonstrate that in the presence of ICI182,780, cisplatin-treated medulloblastoma cells show recruitment of Rad51 to the sites of damaged DNA and increase in HRR activity. This enhanced DNA repair during the S phase preserved also clonogenic potential of medulloblastoma cells treated with cisplatin. In conclusion, inhibition of ER considered as a supplemental anticancer therapy, has been found to interfere with cisplatin-induced cytotoxicity in human medulloblastoma cell lines.

Loading Neurological Cancer Research collaborators
Loading Neurological Cancer Research collaborators