Time filter

Source Type

Alvarez-Suarez J.M.,Marche Polytechnic University | Giampieri F.,Marche Polytechnic University | Tulipani S.,Virgen Of La Victoria Clinical Hospital Imabis Foundation | Casoli T.,Neurobiology of Aging Laboratory | And 9 more authors.
Journal of Nutritional Biochemistry | Year: 2014

Strawberries are an important fruit in the Mediterranean diet because of their high content of essential nutrients and beneficial phytochemicals, which seem to exert beneficial effects in human health. Healthy volunteers were supplemented daily with 500 g of strawberries for 1 month. Plasma lipid profile, circulating and cellular markers of antioxidant status, oxidative stress and platelet function were evaluated at baseline, after 30 days of strawberry consumption and 15 days after the end of the study. A high concentration of vitamin C and anthocyanins was found in the fruits. Strawberry consumption beneficially influenced the lipid profile by significantly reducing total cholesterol, low-density lipoprotein cholesterol and triglycerides levels (-8.78%, -13.72% and -20.80%, respectively; P < .05) compared with baseline period, while high-density lipoprotein cholesterol remained unchanged. Strawberry supplementation also significant decreased serum malondialdehyde, urinary 8-OHdG and isoprostanes levels (-31.40%, -29.67%, -27.90%, respectively; P < .05). All the parameters returned to baseline values after the washout period. A significant increase in plasma total antioxidant capacity measured by both ferric reducing ability of plasma and oxygen radical absorbance capacity assays and vitamin C levels (+24.97%, +41.18%, +41.36%, respectively; P < .05) was observed after strawberry consumption. Moreover, the spontaneous and oxidative hemolysis were significant reduced (-31.7% and -39.03%, respectively; P < .05), compared to the baseline point, which remained stable after the washout period. Finally, strawberry intake significant decrease (P < .05) the number of activated platelets, compared to both baseline and washout values. Strawberries consumption improves plasma lipids profile, biomarkers of antioxidant status, antihemolytic defenses and platelet function in healthy subjects, encouraging further evaluation on a population with higher cardiovascular disease risk. © 2014 Elsevier Inc.


Casoli T.,Neurobiology of Aging Laboratory | Di Stefano G.,Neurobiology of Aging Laboratory | Fattoretti P.,Neurobiology of Aging Laboratory | Fattoretti P.,Cellular Bioenergetics Laboratory | And 7 more authors.
Neurobiology of Aging | Year: 2012

Previous studies have shown that messenger RNA (mRNA) of the dynamin-binding protein (DNMBP), a scaffold protein regulating actin cytoskeleton and synaptic vesicle pools, is lower in neuropathologically-confirmed Alzheimer's brains. Here we investigated whether a deficit in long term memory formation during physiological aging is also associated with lower DNMBP expression. Hippocampal DNMBP mRNA was quantified by quantitative real time reverse transcriptase polymerase chain reaction (qRT-PCR) following inhibitory avoidance task in aged (26- to 27-month-old) rats that, according to memory performance, were ranked as good responders (GR) and bad responders (BR), in adult (3-month-old), late-adult (19-month-old), and aged (26-27-month-old) naive animals. We found that DNMBP mRNA levels were significantly higher in naive adults versus late adult and aged naive rats, in GR versus BR, and in pooled GR and BR versus aged-matched controls. Our data provide the first evidence that hippocampal DNMBP mRNA expression is reduced during physiological aging, and suggest that the capability to increase the expression of this mRNA may be a requirement for preserving long term memory formation during aging. © 2012 Elsevier Inc.


Balietti M.,Neurobiology of Aging Laboratory | Balietti M.,Cellular Bioenergetics Laboratory | Casoli T.,Neurobiology of Aging Laboratory | Di Stefano G.,Neurobiology of Aging Laboratory | And 4 more authors.
Ageing Research Reviews | Year: 2010

Ketogenic diets (KDs), successfully used in the therapy of paediatric epilepsy for nearly a century, have recently shown beneficial effects also in cancer, obesity, diabetes, GLUT 1 deficiencies, hypoxia-ischemia, traumatic brain injuries, and neurodegeneration. The latter achievement designates aged individuals as optimal recipients, but concerns derive from possible age-dependent differences in KDs effectiveness. Indeed, the main factors influencing ketone bodies utilization by the brain (blood levels, transport mechanisms, catabolic enzymes) undergo developmental changes, although several reports indicate that KDs maintain some efficacy during adulthood and even during advanced aging. Encouraging results obtained in patients affected by age-related neurodegenerative diseases have prompted new interest on KDs' effect on the aging brain, also considering the poor efficacy of therapies currently used. However, recent morphological evidence in synapses of late-adult rats indicates that KDs consequences may be even opposite in different brain regions, likely depending on neuronal vulnerability to age. Thus, further studies are needed to design KDs specifically indicated for single neurodegenerative diseases, and to ameliorate the balance between beneficial and adverse effects in aged subjects. Here we review clinical and experimental data on KDs treatments, focusing on their possible use during pathological aging. Proposed mechanisms of action are also reported and discussed. © 2010 Elsevier Ireland Ltd. All rights reserved.


Balietti M.,Neurobiology of Aging Laboratory | Balietti M.,Cellular Bioenergetics Laboratory | Tamagnini F.,University of Bologna | Fattoretti P.,Neurobiology of Aging Laboratory | And 6 more authors.
Rejuvenation Research | Year: 2012

Aging is associated with a gradual decline in cognitive functions, and more dramatic cognitive impairments occur in patients affected by Alzheimer's disease (AD). Electrophysiological and molecular studies performed in aged animals and in animal models of AD have shown that cognitive decline is associated with significant modifications in synaptic plasticity (i.e., activity-dependent changes in synaptic strength) and have elucidated some of the cellular mechanisms underlying this process. Morphological studies have revealed a correlation between the quality of memory performance and the extent of structural changes of synaptic contacts occurring during memory consolidation. We briefly review recent experimental evidence here. © 2012 Mary Ann Liebert, Inc.


Tamagnini F.,University of Bologna | Burattini C.,University of Bologna | Casoli T.,Neurobiology of Aging Laboratory | Balietti M.,Neurobiology of Aging Laboratory | And 4 more authors.
Rejuvenation Research | Year: 2012

Visual recognition memory is early impaired in Alzheimer's disease. Long-term depression of synaptic transmission in the perirhinal cortex is critically involved in this form of memory. We found that synaptic transmission was impaired in perirhinal cortex slices obtained from 3-month-old Tg2576 mice, and that 3,000 pulses at 5Hz induced long-term depression in perirhinal cortex slices from age-matched control mice, but not in those from Tg2576 mice. To our knowledge, these data provide the first evidence of synaptic transmission and long-term depression impairment in the perirhinal cortex in an animal model of Alzheimer's disease, and the earliest synaptic deficit in Tg2576 mice. © 2012 Mary Ann Liebert, Inc.


Balietti M.,Neurobiology of Aging Laboratory | Balietti M.,Cellular Bioenergetics Laboratory | Giorgetti B.,Neurobiology of Aging Laboratory | Di Stefano G.,Neurobiology of Aging Laboratory | And 9 more authors.
Micron | Year: 2010

Ketogenic diets (KDs) have been applied in the therapy of paediatric epilepsy for nearly a century. Recently, beneficial results have also been reported on metabolic disorders and neurodegeneration, designating aged individuals as possible recipients. However, KDs efficacy decrease after the suckling period, and very little is known about their impact on the aging brain. In the present study, the effect on the neuronal energetic supply of a KD containing 20% of medium chain triglycerides (MCT) was investigated in Purkinje cells of the cerebellar vermis of late-adult (19-month-old) rats. The animals were fed with the KD for 8 weeks, and succinic dehydrogenase (SDH) activity was cytochemically determined. The following parameters of SDH-positive mitochondria were evaluated by the use of a computer-assisted image analysis system connected to a transmission electron microscope: numeric density (Nv), average volume (V), volume density (Vv), and cytochemical precipitate area/mitochondrial area (R). Young, age-matched, and old animals fed with a standard chow were used as controls. We found significantly higher Nv in MCT-KD-fed rats vs. all the control groups, in young vs. late-adult and old controls, and in late-adult vs. old controls. V and Vv showed no significant differences among the groups. R was significantly higher in MCT-KD-fed rats vs. all the control animals, and in old vs. young and late-adult controls. Present data indicate that the ketogenic treatment counteracted age-related decrease in numeric density of SDH-positive mitochondria, and enhanced their metabolic efficiency. Given the central role of mitochondrial impairment in age-related physio-pathological changes of the brain, these findings may represent a starting point to examine novel potentialities for KDs. © 2009 Elsevier Ltd. All rights reserved.


Palma L.D.,Marche Polytechnic University | Marinelli M.,Marche Polytechnic University | Pavan M.,Marche Polytechnic University | Bertoni-Freddari C.,Neurobiology of Aging Laboratory
Romanian Journal of Morphology and Embryology | Year: 2011

Background: The muscle-tendon junction (MTJ) is a physiologically vital tissue interface and a highly specialized region in the muscle- tendon unit. It is the weakest point in the muscle-tendon unit, making it susceptible to strain injuries. Nonetheless, knowledge of the pathological changes affecting this region and of its response to the atrophy process is very limited. The aim of the study was to examine MTJ ultrastructural morphology in patients with different conditions that induce skeletal muscle atrophy and to attempt a grading of the atrophy process. Materials and Methods: Fifteen patients undergoing amputation in the distal or proximal third of the lower leg due to chronic or acute conditions were divided into two groups. Specimens of gastrocnemius muscle collected at the time of surgery were analyzed by histology and electron microscopy. The contact between muscle and tendon was measured using a dedicated software that calculated semi-automatically the base (B) and perimeter (P) of muscle cell finger-like processes at the MTJ. Results: Electron microscopy. The cells in the atrophic muscle of the chronic group were shallow and bulky. In the acute group, the myotendinous endings differed significantly in their structure from those of the chronic group. In atrophic muscle, the contact between muscle and tendon was reduced by quantitative and qualitative changes in the myotendinous endings. The B/P ratio allowed definition of three grades of myotendinous ending degeneration. Discussion: It is unclear whether degenerative changes induced by immobilization in muscle and, specifically, the MTJ are temporary and reversible or permanent. Conclusions: This preliminary study suggested a classification of ultrastructural MTJ changes into grade 0, reflecting a quite normal MTJ; grade 1, an intermediate process that might lead to irreversible atrophy or to recovery, spontaneously or with drug therapy; and grade 2, irreversible process with complete structural alteration.


PubMed | Neurobiology of Aging Laboratory
Type: Journal Article | Journal: Neurobiology of aging | Year: 2012

Previous studies have shown that messenger RNA (mRNA) of the dynamin-binding protein (DNMBP), a scaffold protein regulating actin cytoskeleton and synaptic vesicle pools, is lower in neuropathologically-confirmed Alzheimers brains. Here we investigated whether a deficit in long term memory formation during physiological aging is also associated with lower DNMBP expression. Hippocampal DNMBP mRNA was quantified by quantitative real time reverse transcriptase polymerase chain reaction (qRT-PCR) following inhibitory avoidance task in aged (26- to 27-month-old) rats that, according to memory performance, were ranked as good responders (GR) and bad responders (BR), in adult (3-month-old), late-adult (19-month-old), and aged (26-27-month-old) naive animals. We found that DNMBP mRNA levels were significantly higher in naive adults versus late adult and aged naive rats, in GR versus BR, and in pooled GR and BR versus aged-matched controls. Our data provide the first evidence that hippocampal DNMBP mRNA expression is reduced during physiological aging, and suggest that the capability to increase the expression of this mRNA may be a requirement for preserving long term memory formation during aging.


PubMed | Neurobiology of Aging Laboratory
Type: Journal Article | Journal: Rejuvenation research | Year: 2012

Aging is associated with a gradual decline in cognitive functions, and more dramatic cognitive impairments occur in patients affected by Alzheimers disease (AD). Electrophysiological and molecular studies performed in aged animals and in animal models of AD have shown that cognitive decline is associated with significant modifications in synaptic plasticity (i.e., activity-dependent changes in synaptic strength) and have elucidated some of the cellular mechanisms underlying this process. Morphological studies have revealed a correlation between the quality of memory performance and the extent of structural changes of synaptic contacts occurring during memory consolidation. We briefly review recent experimental evidence here.


PubMed | Neurobiology of Aging Laboratory
Type: Journal Article | Journal: Journal of the American Aging Association | Year: 2013

The ultrastructural features of perikaryal mitochondria positive to the copper ferrocyanide cytochemical reaction due to SDH activity were investigated in Purkinje cells of adult rats fed a vitamin E (-tocopherol) deficient diet (AVED) for 11 months. The mitochondrial volume fraction (volume density: Vv), the number of organelles/m(3) of tissue (numeric density: Nv) and their average volume (V) were estimated by computer-assisted morphometry. The data obtained were compared with our previous results on 3, 12 and 24 month-old normally fed rats. In a comparison with age-matched controls, AVED animals showed significant decreases of the three morphometric parameters taken into account. These reductions were also observed in old, normally fed rats vs. the young and adult groups, but in AVED rats Vv and V decreased to a higher extent. In adult control animals, the percent of larger organelles (0.32 m(3) >) decreases to less than 1%. Vitamin E deficiency resulted in a steeper reduction of this fraction of organelles, i.e. only 0.5% in the 0.24-0.32 m(3) size range accounted for the largest mitochondria in the AVED group. Taken together, these data document a significant impairment of mitochondrial efficiency in old and AVED rats. We interpret these findings to support that the underlying processes of aging and vitamin E deficiency may share common mechanisms. Considering the antioxidant action of -tocopherol and the SDH role in cellular bioenergetics, inadequate protection from free radical attacks appears to represent an important determinant in the age-related decline of the mitochondrial metabolic competence.

Loading Neurobiology of Aging Laboratory collaborators
Loading Neurobiology of Aging Laboratory collaborators