Time filter

Source Type

Rue, Switzerland

A heating control unit for a building with a heating system, which includes heat exchangers supplied by a boiler, a loop for circulating the heating fluid including a mixing valve, radiators, a return loop, and a control circuit which receives information on the indoor and outdoor conditions in order to control the mixing valve. The control unit includes elements for predicting and optimizing the heating needs of the users of the building and for providing the control circuit with modified information on the outdoor temperature likely to adjust the parameters of the heating system to the needs of the users and minimize power consumption.

Lindelof D.,Neurobat AG | Afshari H.,Neurobat AG | Alisafaee M.,Neurobat AG | Biswas J.,Neurobat AG | And 3 more authors.
Energy and Buildings

Conventional weather-compensated heating controllers are often configured to deliver more heating than necessary, resulting in energy losses. Furthermore, they cannot take into account future climate conditions, and yield less than optimal thermal comfort. We have developed a non-invasive add-on module for existing heating controllers that implements an adaptive, model-predictive heating control algorithm. This algorithm helps the heating controller deliver a heating energy just sufficient for maintaining thermal comfort, resulting in energy savings. In this paper we report on the energy savings measured on ten buildings equipped with this device. By monitoring the space heating energy during the 2013-2014 heating season, and by periodically alternating between the new controller and the reference controller, we establish the energy signature of all buildings with both controllers. The comparison of the energy signatures yields the relative energy savings achievable with the new controller. These energy savings are positive for all test sites, with a mean of 28 ± 4% (standard error of the mean). © 2015 Elsevier B.V. All rights reserved. Source

Discover hidden collaborations