Entity

Time filter

Source Type


Dideriksen J.L.,University of Gottingen | Dideriksen J.L.,University of Aalborg | Gallego J.A.,Neural and Cognitive Engineering Group | Gallego J.A.,Northwestern University | And 6 more authors.
Journal of Neural Engineering | Year: 2015

Objective. Pathological tremors are symptomatic to several neurological disorders that are difficult to differentiate and the way by which central oscillatory networks entrain tremorogenic contractions is unknown. We considered the alternative hypotheses that tremor arises from one oscillator (at the tremor frequency) or, as suggested by recent findings from the superimposition of two separate inputs (at the tremor frequency and twice that frequency). Approach. Assuming one central oscillatory network we estimated analytically the relative amplitude of the harmonics of the tremor frequency in the motor neuron output for different temporal behaviors of the oscillator. Next, we analyzed the bias in the relative harmonics amplitude introduced by superimposing oscillations at twice the tremor frequency. These findings were validated using experimental measurements of wrist angular velocity and surface electromyography (EMG) from 22 patients (11 essential tremor, 11 Parkinson's disease). The ensemble motor unit action potential trains identified from the EMG represented the neural drive to the muscles. Main results. The analytical results showed that the relative power of the tremor harmonics in the analytical models of the neural drive was determined by the variability and duration of the tremor bursts and the presence of the second oscillator biased this power towards higher values. The experimental findings accurately matched the analytical model assuming one oscillator, indicating a negligible functional role of secondary oscillatory inputs. Furthermore, a significant difference in the relative power of harmonics in the neural drive was found across the patient groups, suggesting a diagnostic value of this measure (classification accuracy: 86%). This diagnostic power decreased substantially when estimated from limb acceleration or the EMG. Signficance. The results indicate that the neural drive in pathological tremor is compatible with one central network providing neural oscillations at the tremor frequency. Moreover, the regularity of this neural oscillation varies across tremor pathologies, making the relative amplitude of tremor harmonics a potential biomarker for diagnostic use. © 2015 IOP Publishing Ltd. Source


Ibanez J.,Cajal Institute | Serrano J.I.,Neural and Cognitive Engineering Group | del Castillo M.D.,Neural and Cognitive Engineering Group | Minguez J.,Aragon Institute of Engineering Research | Pons J.L.,Cajal Institute
Medical and Biological Engineering and Computing | Year: 2015

The extent to which the electroencephalographic activity allows the characterization of movements with the upper limb is an open question. This paper describes the design and validation of a classifier of upper-limb analytical movements based on electroencephalographic activity extracted from intervals preceding self-initiated movement tasks. Features selected for the classification are subject specific and associated with the movement tasks. Further tests are performed to reject the hypothesis that other information different from the task-related cortical activity is being used by the classifiers. Six healthy subjects were measured performing self-initiated upper-limb analytical movements. A Bayesian classifier was used to classify among seven different kinds of movements. Features considered covered the alpha and beta bands. A genetic algorithm was used to optimally select a subset of features for the classification. An average accuracy of 62.9 ± 7.5 % was reached, which was above the baseline level observed with the proposed methodology (30.2 ± 4.3 %). The study shows how the electroencephalography carries information about the type of analytical movement performed with the upper limb and how it can be decoded before the movement begins. In neurorehabilitation environments, this information could be used for monitoring and assisting purposes. © 2015, International Federation for Medical and Biological Engineering. Source


Koutsou A.D.,Cajal Institute | Moreno J.C.,Cajal Institute | Del Ama A.J.,National Hospital for Spinal Cord Injury | Rocon E.,Neural and Cognitive Engineering Group | Pons J.L.,Cajal Institute
Journal of NeuroEngineering and Rehabilitation | Year: 2016

Non-invasive neuroprosthetic (NP) technologies for movement compensation and rehabilitation remain with challenges for their clinical application. Two of those major challenges are selective activation of muscles and fatigue management. This review discusses how electrode arrays improve the efficiency and selectivity of functional electrical stimulation (FES) applied via transcutaneous electrodes. In this paper we review the principles and achievements during the last decade on techniques for artificial motor unit recruitment to improve the selective activation of muscles. We review the key factors affecting the outcome of muscle force production via multi-pad transcutaneous electrical stimulation and discuss how stimulation parameters can be set to optimize external activation of body segments. A detailed review of existing electrode array systems proposed by different research teams is also provided. Furthermore, a review of the targeted applications of existing electrode arrays for control of upper and lower limb NPs is provided. Eventually, last section demonstrates the potential of electrode arrays to overcome the major challenges of NPs for compensation and rehabilitation of patient-specific impairments. © 2016 The Author(s). Source


Bayon C.,Neural and Cognitive Engineering Group | Ramirez O.,Neural and Cognitive Engineering Group | Del Castillo M.D.,Neural and Cognitive Engineering Group | Serrano J.I.,Neural and Cognitive Engineering Group | And 8 more authors.
Proceedings - IEEE International Conference on Robotics and Automation | Year: 2016

Cerebral Palsy (CP) is a disorder of posture and movement due to an imperfection or lesion in the immature brain. CP is often associated to sensory deficits, cognition impairments, communication and motor disabilities, behaviour issues, seizure disorder, pain and secondary musculoskeletal problems. New strategies are needed to help to promote, maintain, and rehabilitate the functional capacity, and thereby diminish the dedication and assistance required and the economical demands that this condition represents for the patient, the caregivers and the whole society. This paper describes the conceptualization and development of the integrated CPWalker robotic platform to support novel therapies for CP rehabilitation. This platform (Smart Walker + exoskeleton) is controlled by a multimodal interface to establish the interaction of CP children with robot-based therapies. The objective of these therapies is to improve the physical skills of children with CP and similar disorders. CPWalker concept will promote the earlier incorporation of CP patients to the rehabilitation therapy and increase the level of intensity and frequency of the exercises according to the task, which will enable the maintenance of therapeutic methods in daily basis, with the intention to lead to significant improvements in the treatment outcome. © 2016 IEEE. Source

Discover hidden collaborations