Time filter

Source Type

Lauc G.,Glycobiology Laboratory | Lauc G.,University of Zagreb | Huffman J.E.,University of Edinburgh | Pucic M.,Glycobiology Laboratory | And 42 more authors.
PLoS Genetics | Year: 2013

Glycosylation of immunoglobulin G (IgG) influences IgG effector function by modulating binding to Fc receptors. To identify genetic loci associated with IgG glycosylation, we quantitated N-linked IgG glycans using two approaches. After isolating IgG from human plasma, we performed 77 quantitative measurements of N-glycosylation using ultra-performance liquid chromatography (UPLC) in 2,247 individuals from four European discovery populations. In parallel, we measured IgG N-glycans using MALDI-TOF mass spectrometry (MS) in a replication cohort of 1,848 Europeans. Meta-analysis of genome-wide association study (GWAS) results identified 9 genome-wide significant loci (P<2.27×10-9) in the discovery analysis and two of the same loci (B4GALT1 and MGAT3) in the replication cohort. Four loci contained genes encoding glycosyltransferases (ST6GAL1, B4GALT1, FUT8, and MGAT3), while the remaining 5 contained genes that have not been previously implicated in protein glycosylation (IKZF1, IL6ST-ANKRD55, ABCF2-SMARCD3, SUV420H1, and SMARCB1-DERL3). However, most of them have been strongly associated with autoimmune and inflammatory conditions (e.g., systemic lupus erythematosus, rheumatoid arthritis, ulcerative colitis, Crohn's disease, diabetes type 1, multiple sclerosis, Graves' disease, celiac disease, nodular sclerosis) and/or haematological cancers (acute lymphoblastic leukaemia, Hodgkin lymphoma, and multiple myeloma). Follow-up functional experiments in haplodeficient Ikzf1 knock-out mice showed the same general pattern of changes in IgG glycosylation as identified in the meta-analysis. As IKZF1 was associated with multiple IgG N-glycan traits, we explored biomarker potential of affected N-glycans in 101 cases with SLE and 183 matched controls and demonstrated substantial discriminative power in a ROC-curve analysis (area under the curve = 0.842). Our study shows that it is possible to identify new loci that control glycosylation of a single plasma protein using GWAS. The results may also provide an explanation for the reported pleiotropy and antagonistic effects of loci involved in autoimmune diseases and haematological cancer. © 2013 Lauc et al.

Sattar N.,University of Glasgow | Preiss D.,University of Glasgow | Murray H.M.,University of Glasgow | Welsh P.,University of Glasgow | And 27 more authors.
The Lancet | Year: 2010

Background: Trials of statin therapy have had conflicting findings on the risk of development of diabetes mellitus in patients given statins. We aimed to establish by a meta-analysis of published and unpublished data whether any relation exists between statin use and development of diabetes. Methods: We searched Medline, Embase, and the Cochrane Central Register of Controlled Trials from 1994 to 2009, for randomised controlled endpoint trials of statins. We included only trials with more than 1000 patients, with identical follow-up in both groups and duration of more than 1 year. We excluded trials of patients with organ transplants or who needed haemodialysis. We used the I2 statistic to measure heterogeneity between trials and calculated risk estimates for incident diabetes with random-effect meta-analysis. Findings: We identified 13 statin trials with 91 140 participants, of whom 4278 (2226 assigned statins and 2052 assigned control treatment) developed diabetes during a mean of 4 years. Statin therapy was associated with a 9% increased risk for incident diabetes (odds ratio [OR] 1·09; 95% CI 1·02-1·17), with little heterogeneity (I2=11%) between trials. Meta-regression showed that risk of development of diabetes with statins was highest in trials with older participants, but neither baseline body-mass index nor change in LDL-cholesterol concentrations accounted for residual variation in risk. Treatment of 255 (95% CI 150-852) patients with statins for 4 years resulted in one extra case of diabetes. Interpretation: Statin therapy is associated with a slightly increased risk of development of diabetes, but the risk is low both in absolute terms and when compared with the reduction in coronary events. Clinical practice in patients with moderate or high cardiovascular risk or existing cardiovascular disease should not change. Funding: None. © 2010 Elsevier Ltd. All rights reserved.

Dichgans M.,Ludwig Maximilians University of Munich | Dichgans M.,Synergy Systems | Malik R.,Ludwig Maximilians University of Munich | Konig I.R.,Institute For Medizinische Biometrie Und Statistik | And 43 more authors.
Stroke | Year: 2014

Background and Purpose-Ischemic stroke (IS) and coronary artery disease (CAD) share several risk factors and each has a substantial heritability. We conducted a genome-wide analysis to evaluate the extent of shared genetic determination of the two diseases. Methods-Genome-wide association data were obtained from the METASTROKE, Coronary Artery Disease Genomewide Replication and Meta-analysis (CARDIoGRAM), and Coronary Artery Disease (C4D) Genetics consortia. We first analyzed common variants reaching a nominal threshold of significance (P<0.01) for CAD for their association with IS and vice versa. We then examined specific overlap across phenotypes for variants that reached a high threshold of significance. Finally, we conducted a joint meta-analysis on the combined phenotype of IS or CAD. Corresponding analyses were performed restricted to the 2167 individuals with the ischemic large artery stroke (LAS) subtype. Results-Common variants associated with CAD at P<0.01 were associated with a significant excess risk for IS and for LAS and vice versa. Among the 42 known genome-wide significant loci for CAD, 3 and 5 loci were significantly associated with IS and LAS, respectively. In the joint meta-analyses, 15 loci passed genome-wide significance (P<5×10-8) for the combined phenotype of IS or CAD and 17 loci passed genome-wide significance for LAS or CAD. Because these loci had prior evidence for genome-wide significance for CAD, we specifically analyzed the respective signals for IS and LAS and found evidence for association at chr12q24/SH2B3 (PIS=1.62×10-7) and ABO (PIS=2.6×10-4), as well as at HDAC9 (PLAS=2.32×10-12), 9p21 (PLAS=3.70×10-6), RAI1-PEMT-RASD1 (PLAS=2.69×10-5), EDNRA (PLAS=7.29×10-4), and CYP17A1-CNNM2-NT5C2 (PLAS=4.9×10-4). Conclusions-Our results demonstrate substantial overlap in the genetic risk of IS and particularly the LAS subtype with CAD. © 2013 American Heart Association, Inc.

Chouraki V.,French Institute of Health and Medical Research | Chouraki V.,Institute Pasteur Of Lille | Chouraki V.,University of Lille Nord de France | De Bruijn R.F.A.G.,Erasmus Medical Center | And 50 more authors.
Molecular Psychiatry | Year: 2014

Amyloid beta (Aβ) peptides are the major components of senile plaques, one of the main pathological hallmarks of Alzheimer disease (AD). However, Aβ peptides' functions are not fully understood and seem to be highly pleiotropic. We hypothesized that plasma Aβ peptides concentrations could be a suitable endophenotype for a genome-wide association study (GWAS) designed to (i) identify novel genetic factors involved in amyloid precursor protein metabolism and (ii) highlight relevant Aβ-related physiological and pathophysiological processes. Hence, we performed a genome-wide association meta-analysis of four studies totaling 3 528 healthy individuals of European descent and for whom plasma Aβ 1-40 and Aβ 1 -42 peptides levels had been quantified. Although we did not observe any genome-wide significant locus, we identified 18 suggestive loci (P<1 × 10 - 5). Enrichment-pathway analyses revealed canonical pathways mainly involved in neuronal functions, for example, axonal guidance signaling. We also assessed the biological impact of the gene most strongly associated with plasma Aβ 1 -42 levels (cortexin 3, CTXN3) on APP metabolism in vitro and found that the gene protein was able to modulate Aβ 1 -42 secretion. In conclusion, our study results suggest that plasma Aβ peptides levels are valid endophenotypes in GWASs and can be used to characterize the metabolism and functions of APP and its metabolites. © 2014 Macmillan Publishers Limited.

Demirkan A.,Erasmus Medical Center | van Duijn C.M.,Erasmus Medical Center | van Duijn C.M.,Center for Medical Sytems Biology | Ugocsai P.,University of Regensburg | And 64 more authors.
PLoS Genetics | Year: 2012

Phospho- and sphingolipids are crucial cellular and intracellular compounds. These lipids are required for active transport, a number of enzymatic processes, membrane formation, and cell signalling. Disruption of their metabolism leads to several diseases, with diverse neurological, psychiatric, and metabolic consequences. A large number of phospholipid and sphingolipid species can be detected and measured in human plasma. We conducted a meta-analysis of five European family-based genome-wide association studies (N = 4034) on plasma levels of 24 sphingomyelins (SPM), 9 ceramides (CER), 57 phosphatidylcholines (PC), 20 lysophosphatidylcholines (LPC), 27 phosphatidylethanolamines (PE), and 16 PE-based plasmalogens (PLPE), as well as their proportions in each major class. This effort yielded 25 genome-wide significant loci for phospholipids (smallest P-value = 9.88×10 -204) and 10 loci for sphingolipids (smallest P-value = 3.10×10 -57). After a correction for multiple comparisons (P-value&2.2×10 -9), we observed four novel loci significantly associated with phospholipids (PAQR9, AGPAT1, PKD2L1, PDXDC1) and two with sphingolipids (PLD2 and APOE) explaining up to 3.1% of the variance. Further analysis of the top findings with respect to within class molar proportions uncovered three additional loci for phospholipids (PNLIPRP2, PCDH20, and ABDH3) suggesting their involvement in either fatty acid elongation/saturation processes or fatty acid specific turnover mechanisms. Among those, 14 loci (KCNH7, AGPAT1, PNLIPRP2, SYT9, FADS1-2-3, DLG2, APOA1, ELOVL2, CDK17, LIPC, PDXDC1, PLD2, LASS4, and APOE) mapped into the glycerophospholipid and 12 loci (ILKAP, ITGA9, AGPAT1, FADS1-2-3, APOA1, PCDH20, LIPC, PDXDC1, SGPP1, APOE, LASS4, and PLD2) to the sphingolipid pathways. In large meta-analyses, associations between FADS1-2-3 and carotid intima media thickness, AGPAT1 and type 2 diabetes, and APOA1 and coronary artery disease were observed. In conclusion, our study identified nine novel phospho- and sphingolipid loci, substantially increasing our knowledge of the genetic basis for these traits. © 2012 Demirkan et al.

Discover hidden collaborations