Time filter

Source Type

Gainesville, FL, United States

Weiner I.D.,Nephrology and Hypertension Section | Weiner I.D.,Florida College | Mitch W.E.,Baylor College of Medicine | Sands J.M.,Emory University
Clinical Journal of the American Society of Nephrology | Year: 2015

Renal nitrogen metabolism primarily involves urea and ammonia metabolism, and is essential to normal health. Urea is the largest circulating pool of nitrogen, excluding nitrogen in circulating proteins, and its production changes in parallel to the degradation of dietary and endogenous proteins. In addition to serving as a way to excrete nitrogen, urea transport, mediated through specific urea transport proteins, mediates a central role in the urine concentrating mechanism. Renal ammonia excretion, although often considered only in the context of acid-base homeostasis, accounts for approximately 10% of total renal nitrogen excretion under basal conditions, but can increase substantially in a variety of clinical conditions. Because renal ammonia metabolism requires intrarenal ammoniagenesis from glutamine, changes in factors regulating renal ammonia metabolism can have important effects on glutamine in addition to nitrogen balance. This review covers aspects of protein metabolism and the control of the two major molecules involved in renal nitrogen excretion: urea and ammonia. Both urea and ammonia transport can be altered by glucocorticoids and hypokalemia, two conditions that also affect protein metabolism. Clinical conditions associated with altered urine concentrating ability or water homeostasis can result in changes in urea excretion and urea transporters. Clinical conditions associated with altered ammonia excretion can have important effects on nitrogen balance. © 2015, by the American Society of Nephrology. Source

Weiner I.D.,Nephrology and Hypertension Section | Weiner I.D.,Florida College
Seminars in Nephrology | Year: 2013

The identification of primary aldosteronism as a common cause of resistant hypertension is a significant advance in our ability to care for patients with hypertension. Primary aldosteronism is common, and when unrecognized is associated with an increased incidence of adverse cardiovascular outcomes. Identification of primary aldosteronism is based on use of the plasma aldosterone level, plasma renin activity, and the aldosterone:renin ratio. Differentiation between unilateral and bilateral autonomous adrenal aldosterone production then guides further therapy, with use of mineralocorticoid-receptor blockers for patients with bilateral autonomous adrenal aldosterone production and laparoscopic adrenalectomy for patients with unilateral autonomous aldosterone production. In this review, we discuss in detail the pathogenesis of primary aldosteronism-induced hypertension and potassium disorders, the evaluation of the patient with suspected primary aldosteronism, and the management of primary aldosteronism, both through medications and surgery. © 2013. Source

Weiner I.D.,Nephrology and Hypertension Section | Weiner I.D.,Florida College | Verlander J.W.,Florida College
Comprehensive Physiology | Year: 2013

Renal ammonia metabolism and transport mediates a central role in acid-base homeostasis. In contrast to most renal solutes, the majority of renal ammonia excretion derives from intrarenal production, not from glomerular filtration. Renal ammoniagenesis predominantly results from glutamine metabolism, which produces 2 NH4 + and 2 HCO3 - for each glutamine metabolized. The proximal tubule is the primary site for ammoniagenesis, but there is evidence for ammoniagenesis by most renal epithelial cells. Ammonia produced in the kidney is either excreted into the urine or returned to the systemic circulation through the renal veins. Ammonia excreted in the urine promotes acid excretion; ammonia returned to the systemic circulation is metabolized in the liver in a HCO3 --consuming process, resulting in no net benefit to acid-base homeostasis. Highly regulated ammonia transport by renal epithelial cells determines the proportion of ammonia excreted in the urine versus returned to the systemic circulation. The traditional paradigm of ammonia transport involving passive NH3 diffusion, protonation in the lumen and NH4 + trapping due to an inability to cross plasma membranes is being replaced by the recognition of limited plasma membrane NH3 permeability in combination with the presence of specific NH3-transporting and NH4 +-transporting proteins in specific renal epithelial cells. Ammonia production and transport are regulated by a variety of factors, including extracellular pH and K+, and by several hormones, such as mineralocorticoids, glucocorticoids and angiotensin II. This coordinated process of regulated ammonia production and transport is critical for the effective maintenance of acid-base homeostasis. © 2013 American Physiological Society. Source

Weiner I.D.,Nephrology and Hypertension Section | Weiner I.D.,Florida College | Verlander J.W.,Nephrology and Hypertension Section
American Journal of Physiology - Renal Physiology | Year: 2014

Renal ammonia metabolism is a fundamental element of acid-base homeostasis, comprising a major component of both basal and physiologically altered renal net acid excretion. Over the past several years, a fundamental change in our understanding of the mechanisms of renal epithelial cell ammonia transport has occurred, replacing the previous model which was based upon diffusion equilibrium for NH3 and trapping of NH4 + with a new model in which specific and regulated transport of both NH3 and NH4 + across renal epithelial cell membranes via specific membrane proteins is required for normal ammonia metabolism. A major advance has been the recognition that members of a recently recognized transporter family, the Rhesus glycoprotein family, mediate critical roles in renal and extrarenal ammonia transport. The erythroid-specific Rhesus glycoprotein, Rh A Glycoprotein (Rhag), was the first Rhesus glycoprotein recognized as an ammonia-specific transporter. Subsequently, the nonerythroid Rh glycoproteins, Rh B Glycoprotein (Rhbg) and Rh C Glycoprotein (Rhcg), were cloned and identified as ammonia transporters. They are expressed in specific cell populations and membrane domains in distal renal epithelial cells, where they facilitate ammonia secretion. In this review, we discuss the distribution of Rhbg and Rhcg in the kidney, the regulation of their expression and activity in physiological disturbances, the effects of genetic deletion on renal ammonia metabolism, and the molecular mechanisms of Rh glycoprotein-mediated ammonia transport. © 2014 the American Physiological Society. Source

Mohandas R.,Nephrology and Hypertension Section | Mohandas R.,University of Florida | Segal M.S.,Nephrology and Hypertension Section | Segal M.S.,University of Florida | And 7 more authors.
PLoS ONE | Year: 2015

Objectives: Chronic kidney disease (CKD) is more prevalent among women and is associated with adverse cardiovascular events. Among women with symptoms and signs of ischemia enrolled in the Women's Ischemia Syndrome Evaluation (WISE), a relatively high mortality rate was observed in those with no obstructive coronary artery disease. Coronary microvascular dysfunction or reduced coronary flow reserve (CFR) was a strong and independent predictor of adverse outcomes. The objective of this analysis was to determine if renal function was associated with coronary microvascular dysfunction in women with signs and symptoms of ischemia. Methods: The WISE was a multicenter, prospective, cohort study of women undergoing coronary angiography for suspected ischemia. Among 198 women with additional measurements of CFR, we determined the estimated glomerular filtration rate (eGFR) with the CKD-EPI equation. We tested the association between eGFR and CFR with regression analysis. Results: The median eGFR was 89 ml/min. The eGFR correlated with CFR (r = 0.22; P = 0.002). This association persisted even after covariate adjustment. Each 10-unit decrease in eGFR was associated with a 0.04-unit decrease in CFR (P = 0.04). There was a strong interaction between eGFR and age (P = 0.006): in those ≥60 years old, GFR was strongly correlated with CFR (r = 0.55; P<0.0001). No significant correlation was noted in those <60 years old. Conclusions: Reduced renal function was significantly associated with lower CFR in women with symptoms and signs of ischemia. Coronary microvascular dysfunction warrants additional study as a mechanism contributing to increased risk of cardiovascular events in CKD. © 2015, Public Library of Science. All rights reserved. Source

Discover hidden collaborations