Time filter

Source Type

Schmidt H.P.,Ithaka Institute for Carbon Strategies | Pandit B.H.,Nepal Agroforestry Foundation NAF | Martinsen V.,University of Life science | Cornelissen G.,University of Life science | And 4 more authors.
Agriculture | Year: 2015

A widely abundant and invasive forest shrub, Eupatorium adenophorum, was pyrolyzed in a cost-efficient flame curtain kiln to produce biochar. The resulting biochar fulfilled all the requirements for premium quality, according to the European Biochar Certificate. The biochar was either applied alone or mixed with fresh cow urine (1:1 volume) to test its capacity to serve as slow release fertilizer in a pumpkin field trial in Nepal. Treatments included cow-manure compost combined with (i) urine-only; (ii) biochar-only or (iii) urine-loaded biochar. All materials were applied directly to the root zone at a biochar dry matter content of 750 kg·ha-1 before seeding. The urine-biochar treatment led to a pumpkin yield of 82.6 t·ha-1, an increase of more than 300% compared with the treatment where only urine was applied, and an 85% increase compared with the biochar-only treatment. This study showed for the first time that a low-dosage root zone application of urine-enhanced biochar led to substantial yield increases in a fertile silt loam soil. This was tentatively explained by the formation of organic coating of inner pore biochar surfaces by the urine impregnation, which improved the capacity of the biochar to capture and exchange plant nutrients. © 2015 by the authors. Source

Dhakal A.,Nepal Agroforestry Foundation NAF | Cockfield G.,University of Southern Queensland | Maraseni T.N.,University of Southern Queensland
Agroforestry Systems | Year: 2015

This paper attempts to fulfil the gap in measuring adoption in agroforestry studies. It explains the derivation of an index of adoption rate in a Nepalese context and examines the factors affecting adoption of agroforestry-based land management practice (AFLMP) in the Dhanusha District of Nepal. Data about the different farm practices and the factors (bio-physical, socio-economic) influencing adoption were collected during focus group discussion and from the randomly selected households using a household survey questionnaire, respectively. A multivariate regression model was used to determine the factors. The factors (variables) found to significantly affect adoption of AFLMP were: farm size, availability of irrigation water, education of household heads, agricultural labour force, frequency of visits by extension workers, expenditure on farm inputs purchase, household’s experience in agroforestry, and distance from home to government forest. The regression model explained about 75 % of variation in adoption decision. The model rejected ‘erosion hazard’, ‘flood hazard’ and ‘gender’ as determinants of adoption, which in case of single agroforestry practice were major variables and played positive role. Out of eight variables, farm size played the most powerful role in explaining the variation in adoption, followed by availability of irrigation water and education of household heads. The results of this study suggest that policies to promote the provision of irrigation water, extension services and motivation to obtaining higher education would probably provide the incentive to adopt agroforestry elsewhere in the terai of Nepal. © 2015, Springer Science+Business Media Dordrecht. Source

Cornelissen G.,Norwegian Geotechnical Institute | Cornelissen G.,University of Life science | Pandit N.R.,University of Life science | Taylor P.,Ithaka Institute for Carbon Strategies | And 3 more authors.
PLoS ONE | Year: 2016

Flame Curtain Biochar Kilns: Pyrolysis of organic waste or woody materials yields charcoal, a stable carbonaceous product that can be used for cooking or mixed into soil, in the latter case often termed "biochar". Traditional kiln technologies for charcoal production are slow and without treatment of the pyrolysis gases, resulting in emissions of gases (mainly methane and carbon monoxide) and aerosols that are both toxic and contribute to greenhouse gas emissions. In retort kilns pyrolysis gases are led back to a combustion chamber. This can reduce emissions substantially, but is costly and consumes a considerable amount of valuable ignition material such as wood during start-up. To overcome these problems, a novel type of technology, the Kon- Tiki flame curtain pyrolysis, is proposed. This technology combines the simplicity of the traditional kiln with the combustion of pyrolysis gases in the flame curtain (similar to retort kilns), also avoiding use of external fuel for start-up. Biochar Characteristics: A field study in Nepal using various feedstocks showed char yields of 22 ± 5% on a dry weight basis and 40 ± 11% on a C basis. Biochars with high C contents (76 ± 9%; n = 57), average surface areas (11 to 215 m2g-1), low EPA16 - PAHs (2.3 to 6.6 mg kg-1) and high CECs (43 to 217 cmolc/kg)(average for all feedstocks, mainly woody shrubs) were obtained, in compliance with the European Biochar Certificate (EBC). Gas Emission Factors: Mean emission factors for the flame curtain kilns were (g kg-1 biochar for all feedstocks); CO2 = 4300 ± 1700, CO = 54 ± 35, non-methane volatile organic compounds (NMVOC) = 6 ± 3, CH4 = 30 ± 60, aerosols (PM10)=11± 15, total products of incomplete combustion (PIC) = 100 ± 83 and NOx = 0.4 ± 0.3. The flame curtain kilns emitted statistically significantly (p<0.05) lower amounts of CO, PIC and NOx than retort and traditional kilns, and higher amounts of CO2. Implications: With benefits such as high quality biochar, low emission, no need for start-up fuel, fast pyrolysis time and, importantly, easy and cheap construction and operation the flame curtain technology represent a promising possibility for sustainable rural biochar production. © 2016 Cornelissen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Source

Discover hidden collaborations