Entity

Time filter

Source Type


Hesson J.C.,Uppsala University | LundstroM J.O.,Uppsala University | LundstroM J.O.,Nedre Dalalvens Utvecklings AB | Halvarsson P.,Uppsala University | And 2 more authors.
Medical and Veterinary Entomology | Year: 2010

Culex pipiens pipiens Linnaeus and Culex torrentium Martini (Diptera: Culicidae) are closely related vector species that exist sympatrically in Europe. The two species are morphologically almost identical and can only be distinguished with certainty by characters of the male genitalia. Hence, correct species identification and conclusions on distribution and vector status are very difficult and often neglected. Therefore, we developed a reliable and simple mitochondrial cytochrome c oxidase subunit I (COI) gene restriction enzyme assay to discriminate between Cx. pipiens and Cx. torrentium, based on the analysis of morphologically identified male specimens. We sequenced approximately 830 bp in the 3′ region of the mitochondrial COI gene of 18 morphologically identified males of Cx. pipiens and Cx. torrentium. Two restriction enzymes (FspBI and SspI) that could distinguish between the two species according to species-specific differences in these sequences were chosen. The restriction enzymes were tested on 227 samples from Sweden and verified by sequencing 44 of them. The enzyme FspBI correctly identified all investigated samples; the enzyme SspI identified all samples except one Cx. torrentium. We hope the method and the findings presented here will help to shed light on the true distribution and relative proportions of the two species in Europe. © 2010 The Authors. Journal compilation © 2010 The Royal Entomological Society. Source


Schneider S.,Swedish University of Agricultural Sciences | Hendriksen N.B.,University of Aarhus | Melin P.,Swedish University of Agricultural Sciences | Lundstrom J.O.,Uppsala University | And 2 more authors.
Applied and Environmental Microbiology | Year: 2015

Bacillus thuringiensis serovar israelensis is a wide-spread soil bacterium affiliated with the B. cereus group (Bcg) and is widely used in biocontrol products applied against mosquito and black fly larvae. For monitoring and quantification of applied B. thuringiensis serovar israelensis and its effect on indigenous B. thuringiensis serovar israelensis and Bcg assemblages, efficient and reliable tools are essential. The abundance and properties of B. thuringiensis serovar israelensis strains in the environment traditionally have been investigated with cultivation-dependent techniques, which are hampered by low sensitivity and the morphological similarity between B. cereus and B. thuringiensis. Currently available PCR-based detection and quantification tools target markers located on plasmids. In this study, a new cultivation-independent PCR-based method for efficient and specific quantification of B. thuringiensis serovar israelensis and Bcg is presented, utilizing two sets of PCR primers targeting the bacterial chromosome. Sequence database searches and empirical tests performed on target and nontarget species, as well as on bulk soil DNA samples, demonstrated that this diagnostic tool is specific for B. thuringiensis serovar israelensis and Bcg. The method will be useful for comparisons of Bcg and B. thuringiensis serovar israelensis abundances in the same samples. Moreover, the effect of B. thuringiensis serovar israelensis-based insecticide application on the total Bcg assemblages, including indigenous populations, can be investigated. This type of information is valuable in risk assessment and policy making for use of B. thuringiensis serovar israelensis in the environment. © 2015, American Society for Microbiology. Source


Hesson J.C.,Uppsala University | Ignell R.,Swedish University of Agricultural Sciences | Hill S.R.,Swedish University of Agricultural Sciences | Ostman O.,Uppsala University | And 2 more authors.
Journal of Vector Ecology | Year: 2015

We evaluate three trapping methods for their effectiveness at capturing Culex pipiens and Culex torrentium, both enzootic vectors of bird-associated viruses in Europe. The comparisons, performed in two regions in Sweden, were among CDC traps baited with carbon dioxide, gravid traps, and ovitraps baited with hay infusion. The proportions of the two Culex species in a catch differed between trap types, with CDC traps catching a lower proportion of Cx. torrentium than both gravid traps and ovitraps. Between gravid traps and ovitraps, there was no difference in the proportions of the two species. The results indicate that Cx. torrentium may go undetected or underestimated compared to Cx. pipiens when using carbon dioxide baited CDC traps. The new insight of trap bias presented here adds an important dimension to consider when investigating these vectors of bird-associated viruses in the field. © 2015 The Society for Vector Ecology. Source


Hesson J.C.,Uppsala University | Verner-Carlsson J.,Uppsala University | Verner-Carlsson J.,Public Health Agency of Sweden | Larsson A.,Uppsala University | And 5 more authors.
Emerging Infectious Diseases | Year: 2015

We isolated Sindbis virus (SINV) from the enzootic mosquito vectors Culex torrentium, Cx. pipiens, and Culiseta morsitans collected in an area of Sweden where SINV disease is endemic. The infection rate in Cx. torrentium mosquitoes was exceptionally high (36 infections/1,000 mosquitoes), defining Cx. torrentium as the main enzootic vector of SINV in Scandinavia. © 2015, Centers for Disease Control and Prevention (CDC). All rights reserved. Source


Hesson J.C.,Uppsala University | Ostman O.,Uppsala University | Schafer M.,Uppsala University | Schafer M.,Nedre Dalalvens Utvecklings AB | And 2 more authors.
Vector-Borne and Zoonotic Diseases | Year: 2011

Culex torrentium and Culex pipiens are sibling species and potential viral vectors that coexist in Europe. Larvae and females of the two species are morphologically almost identical, and reliable identification can only be done on males. To investigate the distribution and relative abundance of the two species in Sweden, we collected Culex larvae from sites spread over the country, identified them as Culex pipiens/torrentium based on morphology, and identified them to species using a recently developed restriction enzyme method. Cx. torrentium was the dominant species (89%, n=1012) and it occurred in 48 of the 49 sites investigated, and also dominated in most of the study sites. The proportion of Cx. pipiens larvae in relation to Cx. torrentium collected at each site decreased with both increasing latitude and altitude, and the presence of Cx. pipiens decreased with latitude. In addition, Cx. pipiens/torrentium females were sampled with Centres for Disease Control light traps baited with carbon dioxide. The overall country mean was 4.0 Cx. pipiens/torrentium caught per trap night, with decreasing numbers of Cx. pipiens/torrentium caught per trap night with increasing latitude. Thus, the abundance of Cx. pipiens/torrentium decreased, but the proportion Cx. torrentium increased, with increasing latitude. This is the first study that shows the vast dominance of Cx. torrentium over Cx. pipiens in Sweden. The unexpected dominance of Cx. torrentium highlights the importance of distinguishing between the two species in studies of Culex-borne arboviruses in Europe. © Copyright 2011, Mary Ann Liebert, Inc. Source

Discover hidden collaborations