Paris, France
Paris, France

Time filter

Source Type

Lapillonne A.,University of Paris Descartes | Lapillonne A.,Baylor College of Medicine | Lapillonne A.,Necker Hospital | Griffin I.J.,University of California at Davis
Journal of Pediatrics | Year: 2013

Preterm birth continues to contribute disproportionately to neonatal morbidity and subsequent physical and neurodevelopmental disabilities. Epidemiologic studies have described additional long-term health consequences of preterm birth such as an increased risk of hypertension and insulin resistance in adult life. It is not known whether the influence of infant and childhood growth rates and early nutrition on long-term outcomes is the same or different among preterm infants and neonates with intrauterine growth restriction. Our goal is to review the effects of fetal growth, postnatal growth, and early nutrition on long-term cardiovascular and metabolic outcomes in preterm infants. Present evidence suggests that even brief periods of relative undernutrition during a sensitive period of development have significant adverse effects on later development. Our review suggests that growth between birth and expected term and 12-18 months post-term has no significant effect on later blood pressure and metabolic syndrome, whereas reduced growth during hospitalization significantly impacts later neurodevelopment. In contrast, growth during late infancy and childhood appears to be a major determinant of later metabolic and cardiovascular well being, which suggests that nutritional interventions during this period are worthy of more study. Our review also highlights the paucity of well-designed, controlled studies in preterm infants of the effects of nutrition during hospitalization and after discharge on development, the risk of developing hypertension, or insulin resistance.


SAN DIEGO--(BUSINESS WIRE)--bluebird bio, Inc. (Nasdaq: BLUE), a clinical-stage company committed to developing potentially transformative gene therapies for severe genetic diseases and T cell-based immunotherapies for cancer, announced the presentation of new data from the ongoing HGB-205 clinical study evaluating its LentiGlobin product candidate in patients with transfusion-dependent β-thalassemia (TDT) and severe sickle cell disease (SCD) at the 58th American Society of Hematology Annual Meeting. The data from the HGB-205 study were highlighted today in a poster presentation by Marina Cavazzana, M.D., Ph.D., lead investigator of the HGB-205 study conducted in Necker Hospital, AP-HP and professor of hematology at Paris Descartes University, head of the department of Biotherapy Hospital, the clinical research center of Biotherapy at Necker Enfants Malades - Greater Paris University Hospitals, AP-HP and Inserm) and the Lymphohematopoiesis Laboratory, Institute of Genetic Diseases, Imagine, Paris, France. “We believe the enduring responses seen in this study - in the patients with TDT as well as the patient with SCD - demonstrate the continued promise of LentiGlobin gene therapy in both of these patient populations. We have seen nearly three years of transfusion independence in TDT in certain patients, providing important data on the long-term safety and durability of this therapy,” said David Davidson, M.D., chief medical officer, bluebird bio. “In addition, it is encouraging that the patient with SCD has remained free of acute SCD-related clinical events in the 21 months since treatment, when he previously required monthly blood transfusions to help control his SCD symptoms. This patient’s successful outcome not only offers hope for the potential of LentiGlobin to benefit other patients with SCD, but also provides important insights into this complex disease that we are applying to our ongoing HGB-206 study.” Abstract #2311: Update from the HGB-205 Phase 1/2 Clinical Study of LentiGlobin Gene Therapy: Sustained Clinical Benefit in Severe Hemoglobinopathies HGB-205 is an ongoing, open-label, single-center Phase 1/2 study designed to evaluate the safety and efficacy of LentiGlobin drug product in the treatment of patients with TDT and severe SCD. Four patients with TDT and one patient with severe SCD have undergone infusion with LentiGlobin drug product in this study as of September 9, 2016. The patients with TDT have between 11.6 and 33.5 months of follow-up, and the patient with SCD has 22.9 months of follow-up. “These data show a stable clinical and biological effect in patients with TDT or severe SCD who have received a one-time treatment with LentiGlobin,” said Professor Cavazzana. “We are now seeing the benefit of gene therapy with LentiGlobin beyond two years in TDT in certain patients, and clinical benefit continues to be realized in the patient with severe SCD after almost 24 months of follow-up. We are encouraged by these results and the potential benefit treatment with LentiGlobin can have on patients living with these debilitating diseases and without an HLA compatible sibling donor.” bluebird bio will host a live webcast at 8:30 p.m. PT (11:30 p.m. ET) on Monday, December 5, 2016. The live webcast can be accessed under "Calendar of Events" in the Investors and Media section of the company's website at www.bluebirdbio.com. With its lentiviral-based gene therapies, T cell immunotherapy expertise and gene editing capabilities, bluebird bio has built an integrated product platform with broad potential application to severe genetic diseases and cancer. bluebird bio’s gene therapy clinical programs include its Lenti-D™ product candidate, currently in a Phase 2/3 study, called the Starbeam Study, for the treatment of cerebral adrenoleukodystrophy, and its LentiGlobin™ BB305 product candidate, currently in four clinical studies for the treatment of transfusion-dependent β-thalassemia and severe sickle cell disease. bluebird bio’s oncology pipeline is built upon the company’s leadership in lentiviral gene delivery and T cell engineering, with a focus on developing novel T cell-based immunotherapies, including chimeric antigen receptor (CAR T) and T cell receptor (TCR) therapies. bluebird bio’s lead oncology program, bb2121, is an anti-BCMA CAR T program partnered with Celgene. bb2121 is currently being studied in a Phase 1 trial for the treatment of relapsed/refractory multiple myeloma. bluebird bio also has discovery research programs utilizing megaTALs/homing endonuclease gene editing technologies with the potential for use across the company’s pipeline. This release contains “forward-looking statements” within the meaning of the Private Securities Litigation Reform Act of 1995, including statements regarding the Company’s research, development, manufacturing and regulatory approval plans for its LentiGlobin product candidate to treat transfusion-dependent ß-thalassemia and severe sickle cell disease. Any forward-looking statements are based on management’s current expectations of future events and are subject to a number of risks and uncertainties that could cause actual results to differ materially and adversely from those set forth in or implied by such forward-looking statements. These risks and uncertainties include, but are not limited to, risks that the preliminary positive results from our prior and ongoing clinical trials of LentiGlobin, including HGB-205, will not continue or be repeated in our ongoing or planned clinical trials of LentiGlobin, the risks that the changes we have made in the LentiGlobin manufacturing process or the HGB-206 clinical trial protocol will not result in improved patient outcomes, risks that the current or planned clinical trials of LentiGlobin will be insufficient to support regulatory submissions or marketing approval in the US and EU, the risk of a delay in the enrollment of patients in our clinical studies, and the risk that any one or more of our product candidates will not be successfully developed, approved or commercialized. For a discussion of other risks and uncertainties, and other important factors, any of which could cause our actual results to differ from those contained in the forward-looking statements, see the section entitled “Risk Factors” in our most recent quarterly report on Form 10-Q, as well as discussions of potential risks, uncertainties, and other important factors in our subsequent filings with the Securities and Exchange Commission. All information in this press release is as of the date of the release, and bluebird bio undertakes no duty to update this information unless required by law. About AP-HP: AP-HP - Greater Paris University hospitals - is a European world-renowned European university hospital. Its 39 hospitals treat 8 million people every year: in consultation, emergency, during scheduled or home hospitalizations. The AP-HP provides a public health service for everyone, 24 hours a day. This mission is a duty as well as a grzeat source of pride. The AP-HP is the leading employer un the Greater Paris area : 100 000 staff members – doctors, researchers, paramedical staff, administrative personnel and workers – work there. http://www.aphp.fr About the Imagine Institute: As the leading European center for research, care and teaching in genetic diseases, the Imagine Institute's primary aim is to understand and cure. The Institute's staff includes 850 of the best physicians, scientists and healthcare professionals housed in an innovative new building designed to realize synergies. This unprecedented continuum of expertise available in close proximity to patients allows Imagine to accelerate discoveries and their application at the bedside. www.institutimagine.org


CAMBRIDGE, Mass.--(BUSINESS WIRE)--bluebird bio, Inc. (Nasdaq: BLUE), a clinical-stage company committed to developing potentially transformative gene therapies for severe genetic diseases and T cell-based immunotherapies for cancer, today announced the publication in the New England Journal of Medicine of a case study on Patient 1204, the first patient with severe sickle cell disease (SCD) to be treated with gene therapy. This patient, who was 13 years old at the time of treatment, was treated with LentiGlobin drug product in the HGB-205 clinical study conducted in Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France. The data in the publication reflect 15 months of follow-up, and a brief summary of this patient’s outcomes with 21 months of follow-up was presented at the 58th American Society of Hematology Annual Meeting in December 2016. “We have managed this patient at Necker for more than 10 years, and standard treatments were not able to control his SCD symptoms. He had to receive blood transfusions every month to prevent severe pain crises,” said Professor Marina Cavazzana, M.D., Ph.D., principal investigator of this study and professor of hematology at Paris Descartes University, head of the department of Biotherapy Hospital, the clinical research center of Biotherapy at Necker Enfants Malades - Greater Paris University Hospital, AP-HP and INSERM, and of the Lymphohematopoiesis Laboratory, Imagine Institute of Genetic Diseases, Paris, France. “Since receiving the autologous stem cell transplant with LentiGlobin, he has been free from severe symptoms and has resumed normal activities, without the need for further transfusions.” “Since our initial publication of this therapeutic approach in mouse models in 2001, we are delighted to obtain such a clear proof-of-principle of its efficacy in a patient,” said Philippe Leboulch, M.D. Dr. Leboulch is professor of medicine at the University Paris-Sud and High Counselor and International Scientific Director at France’s CEA. He was a scientific founder of bluebird bio and serves as the co-chairman of its Scientific Advisory Board. Dr. Leboulch led the development of the anti-sickling T87Q globin vector used in LentiGlobin. “We are pleased to see this case study published in NEJM and shared with the broader research community. The successful outcome in Patient 1204 demonstrates the promise of treatment with LentiGlobin gene therapy in patients with severe SCD and serves as a guide for our efforts to optimize outcomes in future patients,” said David Davidson, M.D., chief medical officer, bluebird bio. “By analyzing this patient’s experience, we have identified key variables to optimize in our ongoing HGB-206 study of LentiGlobin gene therapy in severe SCD, and we are hopeful that these protocol changes will enable subsequent patients to achieve the transformative benefit seen in Patient 1204.” Clinical and Biological Outcomes for the First Patient with Sickle Cell Disease Treated with Gene Therapy Patient 1204, a male patient with βS/βS genotype, was enrolled in May 2014 at 13 years of age into the HGB-205 clinical study. The patient underwent a regular transfusion regimen for 4 years prior to this study. He had an average of 1.6 SCD-related events annually in the 9 years prior to initiating transfusions, and his complications from SCD included vaso-occlusive crises, acute-chest syndrome, bilateral hip osteonecrosis, and cerebral vasculopathy. The patient underwent two bone marrow harvests to collect hematopoietic stem cells (HSCs) for gene transfer and back-up (6.2×108 and 5.4×108 total nucleated cells/kg harvested). CD34+ cells were enriched from the harvested marrow and then transduced with LentiGlobin BB305 lentiviral vector. The vector copy numbers (VCN; vector copies per diploid genome) for the drug product lots manufactured were 1.0 and 1.2. The patient underwent myeloablation with intravenous busulfan (2.3 to 4.8 mg/kg per day for 4 days) with daily pharmacokinetic studies and dose adjustment. Total busulfan area under the curve (AUC) was 19,363 μmol*min. After a 2-day washout, Patient 1204 was infused with LentiGlobin drug product in October 2014 at a post-thaw total dose of 5.6×106 CD34+ cells/kg. RBC transfusions were to be continued after transplantation until a sufficient proportion of HbAT87Q (25-30% of total Hb) was detected. Neutrophil and platelet engraftment were achieved on Day +38 and Day +91 post-transplantation, respectively. HbAT87Q levels increased steadily and RBC transfusions were discontinued after the last transfusion on Day +88. HbAT87Q reached 5.5 g/dL (46% of total Hb) at Month 9 and continued to increase to 5.7 g/dL at Month 15 (48%), with a reciprocal decrease in HbS levels to 5.5 g/dL (46%) at Month 9, and 5.8 g/dL (49%) at Month 15. Total Hb levels have been stable between 10.6 and 12.0 g/dL since Month 6 post-transplant. HbF levels have remained below 1.0 g/dL. Adverse events (AEs) were consistent with busulfan conditioning, and no AEs related to LentiGlobin drug product have been observed to date. Over the 15 months since transplantation, no SCD-related clinical events or hospitalizations have occurred, contrasting favorably with the period before the patient began regular transfusions. All medications have been discontinued, including pain medication. The patient has resumed regular school attendance and reports full participation in normal physical activities. About SCD Sickle cell disease (SCD) is an inherited disease caused by a mutation in the β-globin gene that results in sickle-shaped red blood cells. The disease is characterized by anemia, vaso-occlusive crisis, infections, stroke, overall poor quality of life and, sometimes, early death. Where adequate medical care is available, common treatments for patients with SCD largely revolve around management and prevention of acute sickling episodes. Chronic management may include hydroxyurea and, in certain cases, chronic transfusions. Given the limitations of these treatments, there is no effective long-term treatment. The only advanced therapy for SCD is allogeneic hematopoietic stem cell transplantation (HSCT). Complications of allogeneic HSCT include a significant risk of treatment-related mortality, graft failure, graft-versus-host disease, and opportunistic infections, particularly in patients who undergo non-sibling-matched allogeneic HSCT. About bluebird bio, Inc. With its lentiviral-based gene therapies, T cell immunotherapy expertise and gene editing capabilities, bluebird bio has built an integrated product platform with broad potential application to severe genetic diseases and cancer. bluebird bio’s gene therapy clinical programs include its Lenti-D™ product candidate, currently in a Phase 2/3 study, called the Starbeam Study, for the treatment of cerebral adrenoleukodystrophy, and its LentiGlobin™ BB305 product candidate, currently in four clinical studies for the treatment of transfusion-dependent β-thalassemia and severe sickle cell disease. bluebird bio’s oncology pipeline is built upon the company’s leadership in lentiviral gene delivery and T cell engineering, with a focus on developing novel T cell-based immunotherapies, including chimeric antigen receptor (CAR) and T cell receptor (TCR) therapies. bluebird bio’s lead oncology program, bb2121, is an anti-BCMA CAR T program partnered with Celgene. bb2121 is currently being studied in a Phase 1 trial for the treatment of relapsed/refractory multiple myeloma. bluebird bio also has discovery research programs utilizing megaTAL/homing endonuclease gene editing technologies with the potential for use across the company’s pipeline. About AP-HP AP-HP - Greater Paris University hospitals - is a European world-renowned university hospital. Its 39 hospitals treat 8 million people every year: in consultation, emergency, during scheduled or home hospitalizations. The AP-HP provides a public health service for everyone, 24 hours a day. This mission is a duty as well as a great source of pride. The AP-HP is the leading employer in the Greater Paris area: 100,000 staff members – doctors, researchers, paramedical staff, administrative personnel and workers – work there. http://www.aphp.fr About the Imagine Institute As the leading European center for research, care and teaching in genetic diseases, the Imagine Institute's primary aim is to understand and cure. The Institute's staff includes 850 of the best physicians, scientists and healthcare professionals housed in an innovative new building designed to realize synergies. This unprecedented continuum of expertise available in close proximity to patients allows Imagine to accelerate discoveries and their application at the bedside. www.institutimagine.org Forward-Looking Statements This release contains “forward-looking statements” within the meaning of the Private Securities Litigation Reform Act of 1995, including statements regarding the Company’s research and development plans for its LentiGlobin product candidate to treat severe sickle cell disease, including statements whether the manufacturing process changes for LentiGlobin will improve outcomes of patients with severe sickle cell disease and whether the planned changes to the HGB-206 clinical trial protocol will improve outcomes in patients with severe sickle cell disease. Any forward-looking statements are based on management’s current expectations of future events and are subject to a number of risks and uncertainties that could cause actual results to differ materially and adversely from those set forth in or implied by such forward-looking statements. These risks and uncertainties include, but are not limited to, risks that the preliminary positive efficacy and safety results from our prior and ongoing clinical trials of LentiGlobin will not continue or be repeated in our ongoing, planned or expanded clinical trials of LentiGlobin, the risks that the changes we have made in the LentiGlobin manufacturing process or the HGB-206 clinical trial protocol will not result in improved patient outcomes, risks that the current or planned clinical trials of LentiGlobin will be insufficient to support regulatory submissions or marketing approval in the US and EU, the risk of a delay in the enrollment of patients in our clinical studies, and the risk that any one or more of our product candidates will not be successfully developed, approved or commercialized. For a discussion of other risks and uncertainties, and other important factors, any of which could cause our actual results to differ from those contained in the forward-looking statements, see the section entitled “Risk Factors” in our most recent quarterly report on Form 10-K, as well as discussions of potential risks, uncertainties, and other important factors in our subsequent filings with the Securities and Exchange Commission. All information in this press release is as of the date of the release, and bluebird bio undertakes no duty to update this information unless required by law.


Cauchemez S.,Institute Pasteur Paris | Besnard M.,French Polynesia Hospital Center | Bompard P.,Bureau de Veille Sanitaire | Dub T.,Institute Pasteur Paris | And 10 more authors.
The Lancet | Year: 2016

Background The emergence of Zika virus in the Americas has coincided with increased reports of babies born with microcephaly. On Feb 1, 2016, WHO declared the suspected link between Zika virus and microcephaly to be a Public Health Emergency of International Concern. This association, however, has not been precisely quantified. Methods We retrospectively analysed data from a Zika virus outbreak in French Polynesia, which was the largest documented outbreak before that in the Americas. We used serological and surveillance data to estimate the probability of infection with Zika virus for each week of the epidemic and searched medical records to identify all cases of microcephaly from September, 2013, to July, 2015. Simple models were used to assess periods of risk in pregnancy when Zika virus might increase the risk of microcephaly and estimate the associated risk. Findings The Zika virus outbreak began in October, 2013, and ended in April, 2014, and 66% (95% CI 62-70) of the general population were infected. Of the eight microcephaly cases identified during the 23-month study period, seven (88%) occurred in the 4-month period March 1 to July 10, 2014. The timing of these cases was best explained by a period of risk in the first trimester of pregnancy. In this model, the baseline prevalence of microcephaly was two cases (95% CI 0-8) per 10000 neonates, and the risk of microcephaly associated with Zika virus infection was 95 cases (34-191) per 10000 women infected in the first trimester. We could not rule out an increased risk of microcephaly from infection in other trimesters, but models that excluded the first trimester were not supported by the data. Interpretation Our findings provide a quantitative estimate of the risk of microcephaly in fetuses and neonates whose mothers are infected with Zika virus. Funding Labex-IBEID, NIH-MIDAS, AXA Research fund, EU-PREDEMICS. © 2016 Elsevier Ltd.


Chiron C.,French Institute of Health and Medical Research | Chiron C.,Necker Hospital | An I.,Pitie Salpetriere Hospital
Epilepsia | Year: 2014

Contrary to the treatment concerns regarding drug compliance or pregnancy at transition to adulthood, those directly related to epilepsy remain poorly documented. As an initial step to answer this problem, we reviewed the controlled trials of antiepileptic drugs (AEDs) independently performed in adults and children for a given syndrome. Then we reviewed the longitudinal long-term course in the various epilepsy syndromes. Optimizing AED treatment at adulthood might be beneficial, even after many years of pharmacoresistance. Finally we retrospectively reviewed our personal series of 39 patients with specific pharmacoresistant epilepsy syndromes, who transferred from pediatric to adult care between 2005 and 2012. In 26 of the patients, AEDs were modified and, we reduced seizure frequency in 62% of them, including highly refractory patients. By contrast, AED changes in six controlled patients (for pregnancy anticipation or vigabatrin-related retinal toxicity) led to severe seizure relapse. Further studies are needed to elaborate guidelines in pharmacoresistant syndromes during transition and after transfer to adult care. © 2014 International League Against Epilepsy.


Moriceau S.,French Institute of Health and Medical Research | Lenoir G.,Necker Hospital | Witko-Sarsat V.,French Institute of Health and Medical Research | Witko-Sarsat V.,University of Paris Descartes
Journal of Innate Immunity | Year: 2010

Cystic fibrosis (CF) is a chronic inflammatory lung disease characterized by polymorphonuclear neutrophil (PMN)-dominated airway inflammation. Defective apoptosis might explain PMN persistence at these inflammation sites. We previously reported that in CF patients PMN underwent delayed apoptosis, which was not always related to their infectious state and independent of the type of CF transmembrane regulator (CFTR) mutation. To understand the role of infection and PMN apoptosis in CF, PMN apoptosis was investigated in CF parents who are obligate heterozygotes for the CFTR mutation but without chronic bacterial infection. They also demonstrated delayed PMN apoptosis compared with healthy controls, as assessed by annexin-V labeling and caspase-3 cleavage. Diamide, a direct thiol-oxidizing agent, potentiated PMN apoptosis in controls and CF patients, resulting in similar levels of constitutive and Fas-potentiated apoptosis. The cyclin-dependent kinase inhibitor roscovitine provided another approach to restore normal PMN apoptosis. However, the selective CFTR inhibitor CFTRInh172 did not affect PMN apoptosis in control subjects. Apparently, the dysregulation of CF PMN is not only a consequence of the chronic infectious state in CF children but might also be related to CF 'intrinsic' factors. Restoration of normal PMN apoptosis by cellular redox modulation or roscovitine opens new research avenues to decrease PMN-mediated inflammation in CF. Copyright © 2010 S. Karger AG, Basel.


Loupy A.,Necker Hospital | Hill G.S.,Georges Pompidou European Hospital | Jordan S.C.,Cedars Sinai Medical Center
Nature Reviews Nephrology | Year: 2012

Despite improvements in outcomes of renal transplantation, kidney allograft loss remains substantial, and is associated with increased morbidity, mortality and costs. Identifying the pathologic pathways responsible for allograft loss, and the attendant development of therapeutic interventions, will be one of the guiding future objectives of transplant medicine. One of the most important advances of the past decade has been the demonstration of the destructive power of anti-HLA alloantibodies and their association with antibody-mediated rejection (ABMR). Compelling evidence exists to show that donor-specific anti-HLA antibodies (DSAs) are largely responsible for the chronic deterioration of allografts, a condition previously attributed to calcineurin inhibitor toxicity and chronic allograft nephropathy. The emergence of sensitive techniques to detect DSAs, together with advances in the assessment of graft pathology, have expanded the spectrum of what constitutes ABMR. Today, subtler forms of rejection-such as indolent ABMR, C4d-negative ABMR, and transplant arteriopathy-are seen in which DSAs exert a marked pathological effect. In addition, arteriosclerosis, previously thought to be a bystander lesion related to the vicissitudes of aging, is accelerated in ABMR. Advances in our understanding of the pathological significance of DSAs and ABMR show their primacy in the mediation of chronic allograft destruction. Therapies aimed at B cells, plasma cells and antibodies will be important therapeutic options to improve the length and quality of kidney allograft survival. © 2012 Macmillan Publishers Limited. All rights reserved.


D'Agostino M.A.,University of Versailles | D'Agostino M.A.,Necker Hospital
Best Practice and Research: Clinical Rheumatology | Year: 2010

Through recent technological advances, ultrasound allows high-resolution visualisation of inflammatory and destructive changes in tendon and joint structures. Over the last few years, the added value of the use of ultrasound for evaluating entheseal involvement in spondyloarthritis (SpA) patients has been demonstrated. Several studies have described the ultrasound features of enthesitis in SpA, revealing the high frequency of clinically asymptomatic abnormal findings. It is, therefore, highly relevant to consider the validity of ultrasonographic measures of entheseal inflammation and damage. This article focusses on ultrasound appearance of peripheral enthesitis, and underlines the advantages and current limitations of the technique for the management of SpA. © 2010 Elsevier Ltd. All rights reserved.


Helal I.,Necker Hospital
Saudi journal of kidney diseases and transplantation : an official publication of the Saudi Center for Organ Transplantation, Saudi Arabia | Year: 2011

Renal insufficiency is a common complication early after hematopoietic cell transplantation (HCT). We retrospectively examined the incidence, risk factors and associated mortality of acute renal failure (ARF) in a cohort of 101 consecutive allogeneic HCT patients. These patients were reviewed to determine their baseline characteristics, the presence of co-morbid conditions and mortality rates at one year. ARF was defined by the doubling of the baseline serum creatinine (Scr) levels. The mean age of the 101 study patients was 34 ± 11.8 years. Of them, 58 (57.4%) had ARF, yielding an incidence of 2.6% per week during the first year following HCT. The peak frequency of ARF occurred during the second week (29.3%). The need for hemodialysis, a proof of the severity of ARF, was seen in 12 cases (20.7%). On univariate analysis, the Scr at one month greater than 90 μmol/L (P = 0.008), use of aminoglycosides (P < 10 -3 ), the presence of veno-occlusive disease (VOD) (P < 10 -3 ) and the need for admission to the intensive care unit (ICU) (P = 0.003) were associated with a significantly increased risk of ARF. On multivariate analysis, the independent variables associated with an increased risk for ARF were the presence of VOD [P = 0.07, relative risk (RR) = 2.06] and use of aminoglycosides (P < 10 -3 , RR = 11.2). The overall mortality rate among the study patients was 35.6% at the end of the first year. On multivariate analysis, only the use of aminoglycosides (P = 0.02, RR = 0.31), admission to the ICU (P < 10 -3, RR = 7.29) and the development of ARF (P = 0.001, RR = 8.97) were independent predictors of mortality. Our study shows that ARF is highly prevalent during the early period following HCT and increases mortality, particularly if dialysis dependent. It frequently occurs following VOD and aminoglycoside use. As the prognosis is rather grim, it is very important that the associated factors be identified early, for an effective prevention of this disease.


Ouss L.,Necker hospital | Tordjman E.,Necker hospital
Neurophysiologie Clinique | Year: 2014

This paper aims to describe current questions concerning conversive disorders among children and adolescents. We first describe prevalence and clinical characteristics of these. Many unresolved questions remain. Why do patients show excess, or loss of function? Attachment theory offers a relevant framework to answer this question. Does neurobiology of conversion disorders shed light on conversive processes? Current neurobiological research paradigms focus on the symptom, trying to infer processes, instead of proposing paradigms that test theoretical hypotheses. The most convincing theoretical framework that has already proposed a coherent theory of conversion is a psychodynamic one, which has not yet been tested with neurobiological paradigms. The interest of studying child and adolescent conversive disorders is to provide a means to more deeply investigate the two challenges we face: theoretical, and clinical ones. It provides the opportunity to access a pathopsychological process at its roots, not yet hidden by many defensive, rationalizing attitudes, and to better explore environmental features. We propose a "complementarist" model, which allows the combination of different approaches (neural, cognitive, environmental, attachment, intra-psychic) and permits proposal of different levels of therapeutic targets and means. © 2014 Elsevier Masson SAS.

Loading Necker Hospital collaborators
Loading Necker Hospital collaborators