Navarro Intera LLC

North Las Vegas, NV, United States

Navarro Intera LLC

North Las Vegas, NV, United States

Time filter

Source Type

Hansen C.W.,Sandia National Laboratories | Behie G.A.,AREVA | Bier A.,Sandia National Laboratories | Brooks K.M.,Southern Nevada Water Authority | And 11 more authors.
Reliability Engineering and System Safety | Year: 2014

Extensive work has been carried out by the U.S. Department of Energy (DOE) in the development of a proposed geologic repository at Yucca Mountain (YM), Nevada, for the disposal of high-level radioactive waste. In support of this development and an associated license application to the U.S. Nuclear Regulatory Commission (NRC), the DOE completed an extensive performance assessment (PA) for the proposed YM repository in 2008. This presentation describes uncertainty and sensitivity analysis results for the early waste package failure scenario class and the early drip shield failure scenario class obtained in the 2008 YM PA. The following topics are addressed: (i) engineered barrier system conditions, (ii) release results for the engineered barrier system, unsaturated zone, and saturated zone, (iii) dose to the reasonably maximally exposed individual (RMEI) specified in the NRC regulations for the YM repository, and (iv) expected dose to the RMEI. The present article is part of a special issue of Reliability Engineering and System Safety devoted to the 2008 YM PA; additional articles in the issue describe other aspects of the 2008 YM PA. © 2013 Elsevier Ltd.


Sallaberry C.J.,Sandia National Laboratories | Behie G.A.,AREVA | Bier A.,Sandia National Laboratories | Brooks K.M.,Southern Nevada Water Authority | And 11 more authors.
Reliability Engineering and System Safety | Year: 2014

Extensive work has been carried out by the U.S. Department of Energy (DOE) in the development of a proposed geologic repository at Yucca Mountain (YM), Nevada, for the disposal of high-level radioactive waste. In support of this development and an associated license application to the U.S. Nuclear Regulatory Commission (NRC), the DOE completed an extensive performance assessment (PA) for the proposed YM repository in 2008. This presentation describes uncertainty and sensitivity analysis results for the igneous intrusive scenario class and the igneous eruptive scenario class obtained in the 2008 YM PA. The following topics are addressed for the igneous intrusive scenario class: (i) engineered barrier system conditions, (ii) release results for the engineered barrier system, unsaturated zone, and saturated zone, (iii) dose to the reasonably maximally exposed individual (RMEI) specified in the NRC regulations for the YM repository, and (iv) expected dose to the RMEI. In addition, expected dose to the RMEI for the igneous eruptive scenario class is also considered. The present article is part of a special issue of Reliability Engineering and System Safety devoted to the 2008 YM PA; additional articles in the issue describe other aspects of the 2008 YM PA. © Published by Elsevier Ltd.


Hansen C.W.,Sandia National Laboratories | Behie G.A.,AREVA | Bier A.,Sandia National Laboratories | Brooks K.M.,Southern Nevada Water Authority | And 11 more authors.
Reliability Engineering and System Safety | Year: 2014

Extensive work has been carried out by the U.S. Department of Energy (DOE) in the development of a proposed geologic repository at Yucca Mountain (YM), Nevada, for the disposal of high-level radioactive waste. In support of this development and an associated license application to the U.S. Nuclear Regulatory Commission (NRC), the DOE completed an extensive performance assessment (PA) for the proposed YM repository in 2008. This presentation describes uncertainty and sensitivity analysis results for the nominal scenario class (i.e., for undisturbed conditions) obtained in the 2008 YM PA. The following topics are addressed: (i) uncertainty and sensitivity analysis procedures, (ii) drip shield and waste package failure, (iii) engineered barrier system conditions, (iv) radionuclide release results for the engineered barrier system, unsaturated zone, and saturated zone, and (v) dose to the reasonably maximally exposed individual specified in the NRC regulations for the YM repository. The present article is part of a special issue of Reliability Engineering and System Safety devoted to the 2008 YM PA; additional articles in the issue describe other aspects of the 2008 YM PA. © 2013 Elsevier Ltd.


Hansen C.W.,Sandia National Laboratories | Behie G.A.,AREVA | Bier A.,Sandia National Laboratories | Brooks K.M.,Southern Nevada Water Authority | And 11 more authors.
Reliability Engineering and System Safety | Year: 2014

Extensive work has been carried out by the US Department of Energy (DOE) in the development of a proposed geologic repository at Yucca Mountain (YM), Nevada, for the disposal of high-level radioactive waste. In support of this development and an associated license application to the US Nuclear Regulatory Commission (NRC), the DOE completed an extensive performance assessment (PA) for the proposed YM repository in 2008. This presentation describes uncertainty and sensitivity analysis results for the seismic ground motion scenario class and the seismic fault displacement scenario class obtained in the 2008 YM PA. The following topics are addressed for the seismic ground motion scenario class: (i) engineered barrier system conditions; (ii) release results for the engineered barrier system, unsaturated zone, and saturated zone; (iii) dose to the reasonably maximally exposed individual (RMEI) specified in the NRC regulations for the YM repository; and (iv) expected dose to the RMEI. In addition, expected dose to the RMEI for the seismic fault displacement scenario class is also considered. The present article is the part of a special issue of Reliability Engineering and System Safety devoted to the 2008 YM PA; additional articles in the issue describe other aspects of the 2008 YM PA. © 2013 Elsevier Ltd.


Hansen C.W.,Sandia National Laboratories | Behie G.A.,AREVA | Brooks K.M.,Southern Nevada Water Authority | Chen Y.,Navarro Intera LLC | And 10 more authors.
Reliability Engineering and System Safety | Year: 2014

Extensive work has been carried out by the U.S. Department of Energy (DOE) in the development of a proposed geologic repository at Yucca Mountain (YM), Nevada, for the disposal of high-level radioactive waste. In support of this development and an associated license application to the U.S. Nuclear Regulatory Commission (NRC), the DOE completed an extensive performance assessment (PA) for the proposed YM repository in 2008. This presentation describes the assessment of compliance with ground water protection standards in the 2008 YM PA. The following topics are addressed: (i) regulatory background, (ii) analysis structure including characterization of uncertainty, and (iii) analysis results for each of the ground water protection standards. The present article is part of a special issue of Reliability Engineering and System Safety devoted to the 2008 YM PA; additional articles in the issue describe other aspects of the 2008 YM PA. © 2013 Elsevier Ltd.


Hansen C.W.,Sandia National Laboratories | Behie G.A.,AREVA | Brooks K.M.,Southern Nevada Water Authority | Chen Y.,Navarro Intera LLC | And 9 more authors.
Reliability Engineering and System Safety | Year: 2014

Extensive work has been carried out by the U.S. Department of Energy (DOE) in the development of a proposed geologic repository at Yucca Mountain (YM), Nevada, for the disposal of high-level radioactive waste. In support of this development and an associated license application to the U.S. Nuclear Regulatory Commission (NRC), the DOE completed an extensive performance assessment (PA) for the proposed YM repository in 2008. This presentation describes the determination of expected (mean) dose to the reasonably maximally exposed individual (RMEI) specified in the NRC regulations for the YM repository resulting from an inadvertent drilling intrusion into the repository. The following topics are addressed: (i) assumed properties of an inadvertent drilling intrusion and the determination of the associated dose and expected (mean) dose to the RMEI, (ii) uncertainty and sensitivity analysis results for expected dose to the RMEI, and (iii) the numerical stability of the sampling-based procedure used to estimate expected (mean) dose to the RMEI. The present article is part of a special issue of Reliability Engineering and System Safety devoted to the 2008 YM PA; additional articles in the issue describe other aspects of the 2008 YM PA. © 2013 Elsevier Ltd.


Hansen C.W.,Sandia National Laboratories | Birkholzer J.T.,Lawrence Berkeley National Laboratory | Blink J.,Lawrence Livermore National Laboratory | Bryan C.R.,Sandia National Laboratories | And 17 more authors.
Reliability Engineering and System Safety | Year: 2014

A summary is presented for the total system model used to represent physical processes associated with the seven scenario classes (i.e., nominal conditions, early waste package (WP) failure, early drip shield (DS) failure, igneous intrusive events, igneous eruptive events, seismic ground motion events and seismic fault displacement events) considered in the 2008 performance assessment for the proposed repository for high-level radioactive waste at Yucca Mountain, Nevada. The total system model estimates dose to an exposed individual resulting from radionuclide movement through the repository system and biosphere. Components of the total system model described in this presentation include models for (i) climate analysis, (ii) land surface infiltration and associated unsaturated zone flow, (iii) multi-scale thermal hydrology and engineered barrier system (EBS) thermal-hydrologic environment, (iv) EBS physical and chemical environment, (v) WP and DS degradation, (vi) drift seepage and drift wall condensation, (vii) waste form degradation and mobilization, (viii) water and radionuclide movement in the EBS and underlying unsaturated and saturated zones, (ix) radionuclide movement in the biosphere and resultant human exposure, and (x) processes specific to early WP and DS failures, intrusive and eruptive igneous events, and seismic ground motion and fault displacement events. © 2013 Elsevier Ltd.


Corrected groundwater 14C ages from the carbonate aquifer in Yucca Flat at the former Nevada Test Site (now the Nevada National Security Site), USA, were evaluated by comparing temporal variations of groundwater 36Cl/Cl estimated with these 14C ages with published records of meteoric 36Cl/Cl variations preserved in packrat middens (piles of plant fragments, fecal matter and urine). Good agreement between these records indicates that the groundwater 14C ages are reasonable and that 14C is moving with chloride without sorbing to the carbonate rock matrix or fracture coatings, despite opposing evidence from laboratory experiments. The groundwater 14C ages are consistent with other hydrologic evidence that indicates significant basin infiltration ceased 8,000 to 10,000 years ago, and that recharge to the carbonate aquifer is from paleowater draining through overlying tuff confining units along major faults. This interpretation is supported by the relative age differences as well as hydraulic head differences between the alluvial and volcanic aquifers and the carbonate aquifer. The carbonate aquifer 14C ages suggest that groundwater velocities throughout much of Yucca Flat are about 2 m/yr, consistent with the long-held conceptual model that blocking ridges of low-permeability rock hydrologically isolate the carbonate aquifer in Yucca Flat from the outlying regional carbonate flow system. © 2014 Springer-Verlag Berlin Heidelberg (outside the USA).

Loading Navarro Intera LLC collaborators
Loading Navarro Intera LLC collaborators