Nautilus Biosciences Canada Inc.

Charlottetown PEI, Canada

Nautilus Biosciences Canada Inc.

Charlottetown PEI, Canada
SEARCH FILTERS
Time filter
Source Type

McCulloch M.W.B.,University of Prince Edward Island | Haltli B.,University of Prince Edward Island | Haltli B.,Nautilus Biosciences Canada Inc. | Marchbank D.H.,University of Prince Edward Island | And 2 more authors.
Marine Drugs | Year: 2012

Pseudopterosins and pseudopteroxazole are intriguing marine natural products that possess notable antimicrobial activity with a commensurate lack of cytotoxicity. New semi-synthetic pseudopteroxazoles, pseudopteroquinoxalines and pseudopterosin congeners along with simple synthetic mimics of the terpene skeleton were synthesized. In order to build structure-activity relationships, a set of 29 new and previously reported compounds was assessed for in vitro antimicrobial and cytotoxic activities. A number of congeners exhibited antimicrobial activity against a range of Gram-positive bacteria including Mycobacterium tuberculosis H37Rv, with four displaying notable antitubercular activity against both replicating and non-replicating persistent forms of M. tuberculosis. One new semi-synthetic compound, 21-((1H-imidazol-5- yl)methyl)-pseudopteroxazole (7a), was more potent than the natural products pseudopterosin and pseudopteroxazole and exhibited equipotent activity against both replicating and non-replicating persistent forms of M. tuberculosis with a near absence of in vitro cytotoxicity. Pseudopteroxazole also exhibited activity against strains of M. tuberculosis H37Rv resistant to six clinically used antibiotics. © 2012 by the authors licensee MDPI.


Forner D.,Nautilus Biosciences Canada Inc. | Berrue F.,Nautilus Biosciences Canada Inc. | Berrue F.,University of Prince Edward Island | Correa H.,Nautilus Biosciences Canada Inc. | And 4 more authors.
Analytica Chimica Acta | Year: 2013

Discovery of novel bioactive metabolites from marine bacteria is becoming increasingly challenging, and the development of novel approaches to improve the efficiency of early steps in the microbial drug discovery process is therefore of interest. For example, current protocols for the taxonomic dereplication of microbial strains generally use molecular tools which do not take into consideration the ability of these selected bacteria to produce secondary metabolites. As the identification of novel chemical entities is one of the key elements driving drug discovery programs, this study reports a novel methodology to dereplicate microbial strains by a metabolomics approach using liquid chromatography-high resolution mass spectrometry (LC-HRMS). In order to process large and complex three dimensional LC-HRMS datasets, the reported method uses a bucketing and presence-absence standardization strategy in addition to statistical analysis tools including principal component analysis (PCA) and cluster analysis. From a closely related group of Streptomyces isolated from geographically varied environments, we demonstrated that grouping bacteria according to the chemical diversity of produced metabolites is reproducible and provides greatly improved resolution for the discrimination of microbial strains compared to current molecular dereplication techniques. Importantly, this method provides the ability to identify putative novel chemical entities as natural product discovery leads. © 2013 Elsevier B.V.


Duncan K.R.,University of Prince Edward Island | Haltli B.,University of Prince Edward Island | Haltli B.,Nautilus Biosciences Canada Inc | Gill K.A.,University of Prince Edward Island | And 5 more authors.
Journal of Industrial Microbiology and Biotechnology | Year: 2015

Marine sediments from Newfoundland, Canada were explored for biotechnologically promising Actinobacteria using culture-independent and culture-dependent approaches. Culture-independent pyrosequencing analyses uncovered significant actinobacterial diversity (H′—2.45 to 3.76), although the taxonomic diversity of biotechnologically important actinomycetes could not be fully elucidated due to limited sampling depth. Assessment of culturable actinomycete diversity resulted in the isolation of 360 actinomycetes representing 59 operational taxonomic units, the majority of which (94 %) were Streptomyces. The biotechnological potential of actinomycetes from NL sediments was assessed by bioactivity and metabolomics-based screening of 32 representative isolates. Bioactivity was exhibited by 41 % of isolates, while 11 % exhibited unique chemical signatures in metabolomics screening. Chemical analysis of two isolates resulted in the isolation of the cytotoxic metabolite 1-isopentadecanoyl-3β-d-glucopyranosyl-X-glycerol from Actinoalloteichus sp. 2L868 and sungsanpin from Streptomyces sp. 8LB7. These results demonstrate the potential for the discovery of novel bioactive metabolites from actinomycetes isolated from Atlantic Canadian marine sediments. © 2014, Society for Industrial Microbiology and Biotechnology.


McCulloch M.W.B.,University of Prince Edward Island | Berrue F.,University of Prince Edward Island | Haltli B.,University of Prince Edward Island | Kerr R.G.,University of Prince Edward Island | Kerr R.G.,Nautilus Biosciences Canada Inc.
Journal of Natural Products | Year: 2011

Rapid one-pot methodologies to prepare pseudopteroxazole (1) and novel congeners from abundant natural pseudopterosins have been devised. This is highlighted here with the first synthesis of the marine natural product homopseudopteroxazole (2) utilizing a novel, silver(I)-mediated catechol to benzoxazole transformation. Pseudopteroxazoles and isopseudopteroxazoles exhibit potent activity against a range of important Gram-positive pathogens including Mycobacterium spp. and vancomycin-resistant Enterococcus faecium. Several non-natural pseudopteroxazoles exhibited strong activity against methicillin-resistant Staphylococcus aureus, thereby displaying a broader spectrum of antibiotic activity compared to pseudopteroxazole. © 2011 The American Chemical Society and American Society of Pharmacognosy.


PubMed | Nautilus Biosciences Canada Inc.
Type: | Journal: Analytica chimica acta | Year: 2013

Discovery of novel bioactive metabolites from marine bacteria is becoming increasingly challenging, and the development of novel approaches to improve the efficiency of early steps in the microbial drug discovery process is therefore of interest. For example, current protocols for the taxonomic dereplication of microbial strains generally use molecular tools which do not take into consideration the ability of these selected bacteria to produce secondary metabolites. As the identification of novel chemical entities is one of the key elements driving drug discovery programs, this study reports a novel methodology to dereplicate microbial strains by a metabolomics approach using liquid chromatography-high resolution mass spectrometry (LC-HRMS). In order to process large and complex three dimensional LC-HRMS datasets, the reported method uses a bucketing and presence-absence standardization strategy in addition to statistical analysis tools including principal component analysis (PCA) and cluster analysis. From a closely related group of Streptomyces isolated from geographically varied environments, we demonstrated that grouping bacteria according to the chemical diversity of produced metabolites is reproducible and provides greatly improved resolution for the discrimination of microbial strains compared to current molecular dereplication techniques. Importantly, this method provides the ability to identify putative novel chemical entities as natural product discovery leads.

Loading Nautilus Biosciences Canada Inc. collaborators
Loading Nautilus Biosciences Canada Inc. collaborators