London, United Kingdom

Natural History Museum in London

www.nhm.ac.uk
London, United Kingdom

A natural history museum is a museum with exhibits about natural history, including such topics as animals, plants, ecosystems, geology, paleontology, and climatology. Some museums feature natural-history collections in addition to other collections, such as ones related to history, art and science. Nature centers often include natural history exhibits.Renaissance cabinets of curiosities were private collections that typically included exotic specimens of natural history, sometimes faked, along with other types of object. The first natural history museum was possibly was that of Swiss scholar Conrad Gessner, established in Zurich in the mid 16th century. The Muséum National d'Histoire Naturelle, established in Paris in 1635, was the first natural history museum to take the form that would be recognized as a natural history museum today. Early natural history museums offered limited accessibility, as they were generally private collections or holdings of scientific societies. The Ashmolean Museum, opened in 1683, was the first natural history museum to grant admission to the general public. Wikipedia.

SEARCH FILTERS
Time filter
Source Type

Ready P.D.,Natural History Museum in London | Ready P.D.,London School of Hygiene and Tropical Medicine
Annual Review of Entomology | Year: 2013

Phlebotomines are the sole or principal vectors of Leishmania, Bartonella bacilliformis, and some arboviruses. The coevolution of sand flies with Leishmania species of mammals and lizards is considered in relation to the landscape epidemiology of leishmaniasis, a neglected tropical disease. Evolutionary hypotheses are unresolved, so a practical phlebotomine classification is proposed to aid biomedical information retrieval. The vectors of Leishmania are tabulated and new criteria for their incrimination are given. Research on fly-parasite-host interactions, fly saliva, and behavioral ecology is reviewed in relation to parasite manipulation of blood feeding, vaccine targets, and pheromones for lures. Much basic research is based on few transmission cycles, so generalizations should be made with caution. Integrated research and control programs have begun, but improved control of leishmaniasis and nuisance-biting requires greater emphasis on population genetics and transmission modeling. Most leishmaniasis transmission is zoonotic, affecting the poor and tourists in rural and natural areas, and therefore control should be compatible with environmental conservation. © 2013 by Annual Reviews. All rights reserved.


Hopkins M.J.,American Museum of Natural History | Smith A.B.,Natural History Museum in London
Proceedings of the National Academy of Sciences of the United States of America | Year: 2015

How ecological and morphological diversity accrues over geological time has been much debated by paleobiologists. Evidence from the fossil record suggests that many clades reach maximal diversity early in their evolutionary history, followed by a decline in evolutionary rates as ecological space fills or due to internal constraints. Here, we apply recently developed methods for estimating rates of morphological evolution during the post-Paleozoic history of a major invertebrate clade, the Echinoidea. Contrary to expectation, rates of evolution were lowest during the initial phase of diversification following the Permo-Triassic mass extinction and increased over time. Furthermore, although several subclades show high initial rates and net decreases in rates of evolution, consistent with "early bursts" of morphological diversification, at more inclusive taxonomic levels, these bursts appear as episodic peaks. Peak rates coincided with major shifts in ecological morphology, primarily associated with innovations in feeding strategies. Despite having similar numbers of species in today's oceans, regular echinoids have accrued far less morphological diversity than irregular echinoids due to lower intrinsic rates of morphological evolution and less morphological innovation, the latter indicative of constrained or bounded evolution. These results indicate that rates of evolution are extremely heterogenous through time and their interpretation depends on the temporal and taxonomic scale of analysis. © 2015, National Academy of Sciences. All rights reserved.


Knapp S.,Natural History Museum in London
Science | Year: 2013

Alfred Russel Wallace's science of distribution provided the foundation of biogeography.


Barrett P.M.,Natural History Museum in London
Annual Review of Earth and Planetary Sciences | Year: 2014

Herbivorous dinosaurs were abundant, species-rich components of Late Triassic-Cretaceous terrestrial ecosystems. Obligate high-fiber herbivory evolved independently on several occasions within Dinosauria, through the intermediary step of omnivory. Anatomical character complexes associated with this diet exhibit high levels of convergence and morphological disparity, and may have evolved by correlated progression. Dinosaur faunas changed markedly during the Mesozoic, from early faunas dominated by taxa with simple, uniform feeding mechanics to Cretaceous biomes including diverse sophisticated sympatric herbivores; the environmental and biological drivers causing these changes remain unclear. Isotopic, taphonomic, and anatomical evidence implies that niche partitioning reduced competition between sympatric herbivores, via morphological differentiation, dietary preferences, and habitat selection. Large body size in dinosaur herbivores is associated with low plant productivity, and gave these animals prominent roles as ecosystem engineers. Although dinosaur herbivores lived through several major events in floral evolution, there is currently no evidence for plant-dinosaur coevolutionary interactions. © 2014 by Annual Reviews. All rights reserved.


Stringer C.,Natural History Museum in London
Trends in Ecology and Evolution | Year: 2014

Recent revelations that human genomes contain DNA introgressed through interbreeding with archaic populations outside of Africa have led to reassessments of models for the origins of our species. The fact that small portions of the DNA of recent Homo sapiens derive from ancient populations in more than one region of the world makes our origins 'multiregional', but does that mean that the multiregional model of modern human origins has been proved correct? The extent of archaic assimilation in living humans remains modest, and fossil evidence outside of Africa shows little sign of the long-term morphological continuity through to recent humans expected from the multiregional model. Thus, rather than multiregionalism, a recent African origin (RAO) model for modern humans is still supported by the data. © 2014.


Modelling has been underdeveloped with respect to constructing palaeobiodiversity curves, but it offers an additional tool for removing sampling from their estimation. Here, an alternative to subsampling approaches, which often require large sample sizes, is explored by the extension and refinement of a pre-existing modelling technique that uses a geological proxy for sampling. Application of the model to the three main clades of dinosaurs suggests that much of their diversity fluctuations cannot be explained by sampling alone. Furthermore, there is new support for a long-term decline in their diversity leading up to the Cretaceous-Paleogene (K-Pg) extinction event. At present, use of this method with data that includes either Lagerstätten or 'Pull of the Recent' biases is inappropriate, although partial solutions are offered. © 2011 The Royal Society.


Lavoue S.,Natural History Museum in London
Proceedings. Biological sciences / The Royal Society | Year: 2011

The relationship between genotypic and phenotypic divergence over evolutionary time varies widely, and cases of rapid phenotypic differentiation despite genetic similarity have attracted much attention. Here, we report an extreme case of the reverse pattern--morphological stasis in a tropical fish despite massive genetic divergence. We studied the enigmatic African freshwater butterfly fish (Pantodon buchholzi), whose distinctive morphology earns it recognition as a monotypic family. We sequenced the mitochondrial genome of Pantodon from the Congo basin and nine other osteoglossomorph taxa for comparison with previous mitogenomic profiles of Pantodon from the Niger basin and other related taxa. Pantodon populations form a monophyletic group, yet their mitochondrial coding sequences differ by 15.2 per cent between the Niger and Congo basins. The mitogenomic divergence time between these populations is estimated to be greater than 50 Myr, and deep genetic divergence was confirmed by nuclear sequence data. Among six sister-group comparisons of osteoglossomorphs, Pantodon exhibits the slowest rate of morphological divergence despite a level of genetic differentiation comparable to both species-rich (e.g. Mormyridae) and species-poor (e.g. Osteoglossidae) families. Morphological stasis in these two allopatric lineages of Pantodon offers a living vertebrate model for investigating phenotypic stability over millions of generations in the face of profound fluctuations in environmental conditions.


Glover A.G.,Natural History Museum in London
Proceedings. Biological sciences / The Royal Society | Year: 2013

We report the results from the first experimental study of the fate of whale and wood remains on the Antarctic seafloor. Using a baited free-vehicle lander design, we show that whale-falls in the Antarctic are heavily infested by at least two new species of bone-eating worm, Osedax antarcticus sp. nov. and Osedax deceptionensis sp. nov. In stark contrast, wood remains are remarkably well preserved with the absence of typical wood-eating fauna such as the xylophagainid bivalves. The combined whale-fall and wood-fall experiment provides support to the hypothesis that the Antarctic circumpolar current is a barrier to the larvae of deep-water species that are broadly distributed in other ocean basins. Since humans first started exploring the Antarctic, wood has been deposited on the seafloor in the form of shipwrecks and waste; our data suggest that this anthropogenic wood may be exceptionally well preserved. Alongside the new species descriptions, we conducted a comprehensive phylogenetic analyses of Osedax, suggesting the clade is most closely related to the frenulate tubeworms, not the vestimentiferans as previous reported.


Richards T.A.,Natural History Museum in London
Current Biology | Year: 2011

Fungi possess robust cell walls and do not engulf prey cells by phagotrophy. As a consequence they are thought to be relatively immune from the invasion of foreign genes. Nonetheless, a growing body of evidence suggests gene transfer has amended the metabolic networks of many fungal species. © 2011 Elsevier Ltd.


Humphrey L.T.,Natural History Museum in London
Seminars in Cell and Developmental Biology | Year: 2010

Human life history incorporates early weaning, a prolonged period of post-weaning dependency and slow somatic growth, late onset of female reproduction, reduced birth spacing and a significant post-reproductive female lifespan, combined with rapid early brain growth. Weaned human offspring lack the cognitive skills and physical capacity required to locate, procure and prepare foods that are appropriate for their immature state and sufficient for their high energy requirements. During the weaning process and throughout childhood human offspring are supported by the provision of energy dense and easily digestible foods. Changes in weaning behaviour during human evolution imply a shift in the balance between maternal costs of lactation and the risk of poor offspring outcome, and may have been driven by an increase in infant nutritional and metabolic requirements, a reduction reproductive lifespan resulting in selection for reduced birth spacing or a change in other factors affecting offspring survival and fitness. © 2009 Elsevier Ltd. All rights reserved.

Loading Natural History Museum in London collaborators
Loading Natural History Museum in London collaborators