Entity

Time filter

Source Type

Saint-Pierre-du-Chemin, France

Leao S.C.,University of Sao Paulo | Tortoli E.,Centro Regionale Of Riferimento Per La Diagnostica Dei Micobatteri | Paul Euze J.,National Veterinary School of Toulouse | Garcia M.J.,Autonomous University of Madrid
International Journal of Systematic and Evolutionary Microbiology | Year: 2011

The names 'Mycobacterium abscessus subsp. abscessus' and 'Mycobacterium abscessus subsp. massiliense', proposed by Leao et al. (2009, J Clin Microbiol 47, 2691-2698), cannot be validly published. The purpose of this report is to provide a description in accordance with the Rules of the Bacteriological Code (1990 Revision). Moreover, the proposal of the name 'Mycobacterium abscessus subsp. massiliense' is contrary to Rule 38 and the correct name of this taxon, at the rank of subspecies, is Mycobacterium abscessus subsp. bolletii comb. nov. A description of Mycobacterium abscessus subsp. abscessus subsp. nov. and an emended description of Mycobacterium abscessus are also given. © 2011 IUMS. Source


Andreoletti O.,National Veterinary School of Toulouse
PLoS pathogens | Year: 2012

It is now clearly established that the transfusion of blood from variant CJD (v-CJD) infected individuals can transmit the disease. Since the number of asymptomatic infected donors remains unresolved, inter-individual v-CJD transmission through blood and blood derived products is a major public health concern. Current risk assessments for transmission of v-CJD by blood and blood derived products by transfusion rely on infectious titers measured in rodent models of Transmissible Spongiform Encephalopathies (TSE) using intra-cerebral (IC) inoculation of blood components. To address the biological relevance of this approach, we compared the efficiency of TSE transmission by blood and blood components when administrated either through transfusion in sheep or by intra-cerebral inoculation (IC) in transgenic mice (tg338) over-expressing ovine PrP. Transfusion of 200 μL of blood from asymptomatic infected donor sheep transmitted prion disease with 100% efficiency thereby displaying greater virulence than the transfusion of 200 mL of normal blood spiked with brain homogenate material containing 10 3ID 50 as measured by intracerebral inoculation of tg338 mice (ID 50 IC in tg338). This was consistent with a whole blood titer greater than 10 3· 6ID 50 IC in tg338 per mL. However, when the same blood samples were assayed by IC inoculation into tg338 the infectious titers were less than 32 ID per mL. Whereas the transfusion of crude plasma to sheep transmitted the disease with limited efficacy, White Blood Cells (WBC) displayed a similar ability to whole blood to infect recipients. Strikingly, fixation of WBC with paraformaldehyde did not affect the infectivity titer as measured in tg338 but dramatically impaired disease transmission by transfusion in sheep. These results demonstrate that TSE transmission by blood transfusion can be highly efficient and that this efficiency is more dependent on the viability of transfused cells than the level of infectivity measured by IC inoculation. Source


Toutain P.-L.,National Veterinary School of Toulouse
Handbook of Experimental Pharmacology | Year: 2010

In racing and other equine sports, it is possible to increase artificially both the physical capability and the presence of a competitive instinct, using drugs, such as anabolic steroids and agents stimulating the central nervous system. The word doping describes this illegitimate use of drugs and the primary motivation of an equine anti-doping policy is to prevent the use of these substances. However, an anti-doping policy must not impede the use of legitimate veterinary medications and most regulatory bodies in the world now distinguish the control of illicit substances (doping control) from the control of therapeutic substances (medication control). For doping drugs, the objective is to detect any trace of drug exposure (parent drug or metabolites) using the most powerful analytical methods (generally chromatographic/mass spectrometric techniques). This so-called "zero tolerance rule" is not suitable for medication control, because the high level of sensitivity of current screening methods allows the detection of totally irrelevant plasma or urine concentrations of legitimate drugs for long periods after their administration. Therefore, a new approach for these legitimate compounds, based upon pharmacokinetic/pharmacodynamic (PK/PD) principles, has been developed. It involves estimating the order of magnitude of the irrelevant plasma concentration (IPC) and of the irrelevant urine concentration (IUC) in order to limit the impact of the high sensitivity of analytical techniques used for medication control. The European Horserace Scientific Liaison Committee (EHSLC), which is the European scientific committee in charge of harmonising sample testing and policies for racehorses in Europe, is responsible for estimating the IPCs and IUCs in the framework of a Risk Analysis. A Risk Analysis approach for doping/medication control involves three sequential steps, namely risk assessment, risk management, and risk communication. For medication control, the main task of EHLSC in the risk management procedure is the establishment of harmonised screening limits (HSL).The HSL is a confidential instruction to laboratories from racing authorities to screen in plasma or urine for the presence of drugs commonly used in equine medication. The HSL is derived from the IPC (for plasma) or from the IUC (for urine), established during the risk assessment step. The EHSLC decided to keep HSL confidential and to inform stakeholders of the duration of the detection time (DT) of the main medications when screening is performed with the HSL. A DT is the time at which the urinary (or plasma) concentration of a drug, in all horses involved in a trial conducted according to the EHSLC guidance rules, is shown to be lower than the HSL when controls are performed using routine screening methods. These DTs, as issued by the EHSLC (and adopted by the Fédération Equestre Internationale or FEI) provide guidance to veterinarians enabling them to determine a withdrawal time (WT) for a given horse under treatment. A WT should always be longer than a DT because the WT takes into account the impact of all sources of animal variability as well as the variability associated with the medicinal product actually administered in order to avoid a positive test. The major current scientific challenges faced in horse doping control are those instances of the administration of recombinant biological substances (EPO, GH, growth factors etc.) having putative long-lasting effects while being difficult or impossible to detect for more than a few days. Innovative bioanalytical approaches are now addressing these challenges. Using molecular tools, it is expected in the near future that transcriptional profiling analysis will be able to identify some molecular "signatures" of exposure to doping substances. The application of proteomic (i.e. the large scale investigation of protein biomarkers) and metabolomic (i.e. the study of metabolite profiling in biological samples) techniques also deserve attention for establishing possible unique fingerprints of drug abuse. © 2010 Springer-Verlag Berlin Heidelberg. Source


Despite the increasing number of ectoparasiticides for pets and their use, flea infestations of cats and dogs are still widespread in Europe. It is therefore important to assess the maintenance of efficacy of the ectoparasiticides for cats and dogs. The present studies aimed to evaluate the efficacy of monthly treatments using a fipronil/(S)-methoprene combination spot-on (Frontline Combo®) on dogs and cats from private veterinary clinics located in seven European countries. The survey was conducted for three months during the flea season 2009. A total of 233 dogs and 180 cats were included. Each animal was treated at Days 0 (Day 0), 30 (D30) and 60 (D60) at the vet clinics. For each animal, at least three flea counts were performed at DO, D30 and/or D60 and/or day 90 (Day 90) in order to evaluate the prevalence of flea infestation and the efficacy of control. At the beginning of the study the prevalence of infested animals was 41.63 % (97/233) in dogs and 47.22 % (85/180) in cats. At D90, the number of dogs remaining infested fell to 8/211 therefore 91.75 % became fleafree. The number of infested cats fell from 85 to 9/173 at D90 therefore 89.41 % were cured. All animals still infested at Day 90 were living under epidemiological conditions that favour heavy flea burdens. These results are similar or better to previous studies, indicating the continuous high level of efficacy for fipronil 10 years after launch. Source


Collet S.H.,National Veterinary School of Toulouse
Toxicological sciences : an official journal of the Society of Toxicology | Year: 2010

The model of the prepubertal ovariectomized lamb was selected as a sensitive model to characterize the estrogenic effects of bisphenol A (BPA) on the hypothalamo-pituitary axis (HPA). In a first experiment, the disrupting effect of BPA and of 17-beta estradiol (E2), administered as a constant 54-h iv infusion, on luteinizing hormone (LH) pulsatility was quantified. The results showed that the inhibitory effect of BPA and E2 on LH secretion appeared to follow a dual mechanism: a rapid (about 1 h) suppressive effect for high exposure and an effect observed with a period of latency (about 48 h) probably of genomic origin and observed for lower E2 and BPA levels. For E2, the disrupting dose was 0.14 microg/(kg x d), corresponding to a plasma concentration of 2 pg/ml; for BPA, the lowest observed disrupting plasma concentration was 38 ng/ml, a value only 10-fold higher than the human plasma concentration routinely reported in biomonitoring surveys. In a second experiment, we showed that after 7 weeks of BPA treatment, there was no BPA accumulation and no evidence of an alteration in the HPA responsiveness to BPA. Finally, our results showed that directly considering plasma concentrations, the ratio of the BPA disrupting plasma concentration in lambs over the observed human plasma concentration is only 10, whereas if the dose is considered, it could be concluded that the BPA disrupting dose in lamb is conservatively 50-fold higher than the currently recommended Tolerable Daily Intake of 50 microg/(kg x d). Source

Discover hidden collaborations