Time filter

Source Type

Zhang J.J.,Nanjing Agricultural University | Zhang J.J.,National Research Center for Edible Fungi Biotechnology and Engineering | Zhang J.J.,Shanghai Key Laboratory of Agricultural Genetics and Breeding | Shi L.,Nanjing Agricultural University | And 14 more authors.
Microbiological Research | Year: 2014

Hypsizygus marmoreus is one of the major edible mushrooms in East Asia. As no efficient transformation method, the molecular and genetics studies were hindered. The glyceraldehyde-3-phosphate dehydrogenase (GPD) gene of H. marmoreus was isolated and its promoter was used to drive the hygromycin B phosphotransferase (HPH) and enhanced green fluorescent protein (EGFP) in H. marmoreus. Agrobacterium tumefaciens-mediated transformation (ATMT) was successfully applied in H. marmoreus. The transformation parameters were optimized, and it was found that co-cultivation of bacteria with protoplast at a ratio of 1000:1 at a temperature of 26. °C in medium containing 0.3. mM acetosyringone resulted in the highest transformation efficiency for Agrobacterium strain. Besides, three plasmids, each carrying a different promoter (from H. marmoreus, Ganoderma lucidum and Lentinula edodes) driving the expression of an antibiotic resistance marker, were also tested. The construct carrying the H. marmoreus gpd promoter produced more transformants than other constructs. Our analysis showed that over 85% of the transformants tested remained mitotically stable even after five successive rounds of subculturing. Putative transformants were analyzed for the presence of hph gene by PCR and Southern blot. Meanwhile, the expression of EGFP in H. marmoreus transformants was detected by fluorescence imaging. This ATMT system increases the transformation efficiency of H. marmoreus and may represent a useful tool for molecular genetic studies in this mushroom species. © 2014 Elsevier GmbH.


Zhang J.,Nanjing Agricultural University | Zhang J.,National Research Center for Edible Fungi Biotechnology and Engineering | Zhang J.,Shanghai Key Laboratory of Agricultural Genetics and Breeding | Ren A.,Nanjing Agricultural University | And 11 more authors.
PLoS ONE | Year: 2015

To elucidate the mechanisms of fruit body development in H. marmoreus, a total of 43609521 high-quality RNA-seq reads were obtained from four developmental stages, including the mycelial knot (H-M), mycelial pigmentation (H-V), primordium (H-P) and fruiting body (H-F) stages. These reads were assembled to obtain 40568 unigenes with an average length of 1074 bp. A total of 26800 (66.06%) unigenes were annotated and analyzed with the Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), and Eukaryotic Orthologous Group (KOG) databases. Differentially expressed genes (DEGs) from the four transcriptomes were analyzed. The KEGG enrichment analysis revealed that the mycelium pigmentation stage was associated with the MAPK, cAMP, and blue light signal transduction pathways. In addition, expression of the two-component system members changed with the transition from H-M to H-V, suggesting that light affected the expression of genes related to fruit body initiation in H. marmoreus. During the transition from H-V to H-P, stress signals associated with MAPK, cAMP and ROS signals might be the most important inducers. Our data suggested that nitrogen starvation might be one of the most important factors in promoting fruit body maturation, and nitrogen metabolism and mTOR signaling pathway were associated with this process. In addition, 30 genes of interest were analyzed by quantitative real-time PCR to verify their expression profiles at the four developmental stages. This study advances our understanding of the molecular mechanism of fruiting body development in H. marmoreus by identifying a wealth of new genes that may play important roles in mushroom morphogenesis. Copyright: © 2015 Zhang et al.


PubMed | National Research Center for Edible Fungi Biotechnology and Engineering
Type: | Journal: Journal of basic microbiology | Year: 2016

As efficient reverse genetic tools are lacking, molecular genetics research has been limited in Hypsizygus marmoreus. In this study, we firstly constructed a gene-silencing method using a dual promoter vector (DPV) which was driven by gpd and 35S promoters. The DPV was introduced into H. marmoreus via a simple electroporation procedure and the highest silenced rate of ura3 gene was 76.6%, indicating that the DPV might be suitable for gene silencing in basidiomycete. In this silencing system, the endogenous orotidine 5-monophosphate decarboxylase gene (ura3) was used as a selectable marker. Besides, we also constructed another silencing system which could silence the ura3 and other genes (lcc1 encoded laccase1) together in H. marmoreus, and named it as co-silencing system. In the co-silenced transformants, we found that the mycelia were thinner and the growth was slower than in the wild-type and control2 strains, which was accordant with the previous study of lcc1 gene, indicating that the selective efficiency of the RNAi-mediated silencing of several genes might be increased by co-silencing ura3. The development of this molecular tool might improve functional studies of multiple genes in the basidiomycete H. marmoreus and also provide a reference for studies of other basidiomycetes.

Loading National Research Center for Edible Fungi Biotechnology and Engineering collaborators
Loading National Research Center for Edible Fungi Biotechnology and Engineering collaborators