National Reference Laboratory for Mycobacteria

Zürich, Switzerland

National Reference Laboratory for Mycobacteria

Zürich, Switzerland

Time filter

Source Type

Havumaki J.,Foundation for Innovative New Diagnostics | Hillemann D.,National Reference Laboratory for Mycobacteria | Ismail N.,South African National Institute for Communicable Diseases | Omar S.V.,South African National Institute for Communicable Diseases | And 4 more authors.
PLoS ONE | Year: 2017

Introduction Despite recent diagnostic advances, the majority of multidrug-resistant tuberculosis (MDR-TB) cases remain undiagnosed. Line probes assays (LiPAs) hold great promise to curb the spread of MDR-TB as they can rapidly detect MDR-TB even when laboratory infrastructure is limited, yet few of these assays are currently widely available or supported by World Health Organization (WHO) policy. Methods The aim of this prospective, blinded, non-inferiority study was to compare the performance of YD Diagnostics REBA MTB MDR LiPA (YD) to the WHO-endorsed Hain MTBDRplus V1 LiPA (Hain V1) for the detection of rifampicin and isoniazid resistance. In phase 1, YD and Hain V1 diagnostic performance was assessed with selected culture isolates and results were compared to phenotypic drug susceptibility testing (DST) results and targeted sequencing data. In phase 2, both assays were tested on processed sputum samples and results were compared to phenotypic DST results. Results In phase 1, YD did not achieve non-inferiority to Hain V1. For isoniazid resistance detection, Hain V1 had a sensitivity of 89% (95%CI 83.8-93%) and specificity of 99.4% (95%CI 96.9-100%). While YD had a similar sensitivity of 92% (95%CI 87.3-95.4%), the specificity was inferior at 92.6% (95%CI 87.6-96%). For rifampicin resistance detection, Hain V1 had a sensitivity of 90.2% (95%CI 84.8-94.2%) and specificity of 98.5% (95%CI 95.7-99.7%) while YD had an inferior sensitivity of 72.4% (95%CI 65.1-78.9%) and a comparable specificity of 98% (95%CI 95-99.5%). Similar results were observed in phase 2. For MDR-TB detection, the sensitivity and specificity of Hain V1 was 93.4% (95%CI 88.2-96.2%) and 96.2% (95%CI 88.2-96.8%), respectively, compared to 75.7% (95%CI 68-82.2%) and 92% (95%CI 88.2-94.9%) for YD. Conclusions YD did not achieve non-inferiority with Hain V1. Further improvements and repeat evaluation of YD is necessary prior to recommending its use for clinical settings. © 2017 Havumaki et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Leuow K.,National and Kapodistrian University of Athens | Papaventsis D.,National Reference Laboratory for Mycobacteria | Kourkoundi S.,National and Kapodistrian University of Athens | Ioannidis P.,National Reference Laboratory for Mycobacteria | And 8 more authors.
Eurosurveillance | Year: 2013

We present the first fatal case of extensively drugresistant tuberculosis (XDR-TB) in an injecting drug user (IDU) in Athens, Greece, co-infected with human immunodeficiency virus and hepatitis C virus and discuss the implications for public health. Despite immediate initiation of treatment, the patient's condition gradually deteriorated and he died 16 days after hospital admission because of multiple organ failure. The contact tracing investigation revealed no further infections among the patient's contacts.


Nathavitharana R.R.,Beth Israel Deaconess Medical Center | Hillemann D.,National Reference Laboratory for Mycobacteria | Schumacher S.G.,FIND | Schlueter B.,National Reference Laboratory for Mycobacteria | And 7 more authors.
Journal of Clinical Microbiology | Year: 2016

Less than 30% of multidrug-resistant tuberculosis (MDR-TB) patients are currently diagnosed, due to laboratory constraints. Molecular diagnostics enable rapid and simplified diagnosis. Newer-version line probe assays have not been evaluated against the WHO-endorsed Hain GenoType MTBDRplus (referred to as Hain version 1 [V1]) for the rapid detection of rifampin (RIF) and isoniazid (INH) resistance. A two-phase noninferiority study was conducted in two supranational reference laboratories to allow head-to-head comparisons of two new tests, Hain Genotype MTBDRplus version 2 (referred to as Hain version 2 [V2]) and Nipro NTMMDRTB detection kit 2 (referred to as Nipro), to Hain V1. In phase 1, the results for 379 test strains were compared to a composite reference standard that used phenotypic drug susceptibility testing (DST) and targeted sequencing. In phase 2, the results for 644 sputum samples were compared to a phenotypic DST reference standard alone. Using a challenging set of strains in phase 1, the values for sensitivity and specificity for Hain V1, Hain V2, and Nipro, respectively, were 90.3%/98.5%, 90.3%/98.5%, and 92.0%/98.5% for RIF resistance detection and 89.1%/99.4%, 89.1%/99.4%, and 89.6%/100.0% for INH resistance detection. Testing of sputa in phase 2 yielded values for sensitivity and specificity of 97.1%/97.1%, 98.2%/97.8%, and 96.5%/97.5% for RIF and 94.4%/96.4%, 95.4%/98.8%, and 94.9%/97.6% for INH. Overall, the rates of indeterminate results were low, but there was a higher rate of indeterminate results with Nipro than with Hain V1 and V2 in samples with low smear grades. Noninferiority of Hain V2 and Nipro to Hain V1 was demonstrated for RIF and INH resistance detection in isolates and sputum specimens. These results serve as evidence forWHOpolicy recommendations on the use of line probe assays, including the Hain V2 and Nipro assays, for MDR-TB detection. © 2016, American Society for Microbiology. All Rights Reserved.


PubMed | National Reference Laboratory for Mycobacteria, Beth Israel Deaconess Medical Center, FIND, Ministry of Health and South African National Institute for Communicable Diseases
Type: Journal Article | Journal: Journal of clinical microbiology | Year: 2016

Less than 30% of multidrug-resistant tuberculosis (MDR-TB) patients are currently diagnosed, due to laboratory constraints. Molecular diagnostics enable rapid and simplified diagnosis. Newer-version line probe assays have not been evaluated against the WHO-endorsed Hain GenoType MTBDRplus (referred to as Hain version 1 [V1]) for the rapid detection of rifampin (RIF) and isoniazid (INH) resistance. A two-phase noninferiority study was conducted in two supranational reference laboratories to allow head-to-head comparisons of two new tests, Hain Genotype MTBDRplus version 2 (referred to as Hain version 2 [V2]) and Nipro NTM+MDRTB detection kit 2 (referred to as Nipro), to Hain V1. In phase 1, the results for 379 test strains were compared to a composite reference standard that used phenotypic drug susceptibility testing (DST) and targeted sequencing. In phase 2, the results for 644 sputum samples were compared to a phenotypic DST reference standard alone. Using a challenging set of strains in phase 1, the values for sensitivity and specificity for Hain V1, Hain V2, and Nipro, respectively, were 90.3%/98.5%, 90.3%/98.5%, and 92.0%/98.5% for RIF resistance detection and 89.1%/99.4%, 89.1%/99.4%, and 89.6%/100.0% for INH resistance detection. Testing of sputa in phase 2 yielded values for sensitivity and specificity of 97.1%/97.1%, 98.2%/97.8%, and 96.5%/97.5% for RIF and 94.4%/96.4%, 95.4%/98.8%, and 94.9%/97.6% for INH. Overall, the rates of indeterminate results were low, but there was a higher rate of indeterminate results with Nipro than with Hain V1 and V2 in samples with low smear grades. Noninferiority of Hain V2 and Nipro to Hain V1 was demonstrated for RIF and INH resistance detection in isolates and sputum specimens. These results serve as evidence for WHO policy recommendations on the use of line probe assays, including the Hain V2 and Nipro assays, for MDR-TB detection.


Nikolayevskyy V.,PHE National Mycobacterium Reference Laboratory | Nikolayevskyy V.,Imperial College London | Hillemann D.,National Reference Laboratory for Mycobacteria | Richter E.,National Reference Laboratory for Mycobacteria | And 6 more authors.
PLoS ONE | Year: 2016

Background External quality assurance (EQA) systems are essential to ensure accurate diagnosis of TB and drug-resistant TB. The implementation of EQA through organising regular EQA rounds and identification of training needs is one of the key activities of the European TB reference laboratory network (ERLTB-Net). The aim of this study was to analyse the results of the EQA rounds in a systematic manner and to identify potential benefits as well as common problems encountered by the participants. Methods The ERLTB-Net developed seven EQA modules to test laboratories' proficiency for TB detection and drug susceptibility testing using both conventional and rapid molecular tools. All National TB Reference laboratories in the European Union and European Economic Area (EU/EEA) Member States were invited to participate in the EQA scheme. Results A total of 32 National TB Reference laboratories participated in six EQA rounds conducted in 2010-2014. The participation rate ranged from 52.9%- 94.1%over different modules and rounds. Overall, laboratories demonstrated very good proficiency proving their ability to diagnose TB and drug-resistant TB with high accuracy in a timely manner. A small number of laboratories encountered problems with identification of specific Non-tuberculous Mycobacteria (NTMs) (N = 5) and drug susceptibility testing to Pyrazinamide, Amikacin, Capreomycin, and Ethambutol (N = 4). Conclusions The European TB Reference laboratories showed a steady and high level of performance in the six EQA rounds. A network such as ERLTB-Net can be instrumental in developing and implementing EQA and in establishing collaboration between laboratories to improve the diagnosis of TB in the EU/EEA. © 2016 Nikolayevskyy et al.This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Van der Werf M.J.,Centers for Disease Control and Prevention | Kodmon C.,Centers for Disease Control and Prevention | Katalinic-Jankovic V.,Croatian National Institute of Public Health | Kummik T.,University of Tartu | And 8 more authors.
BMC Infectious Diseases | Year: 2014

Background: Since non-tuberculous mycobacteria (NTM) disease is not notifiable in most European Union (EU) and European Economic Area (EEA) countries, the epidemiological situation of the >150 NTM species is largely unknown. We aimed to collect data on the frequency of NTM detection and NTM species types in EU/EEA countries.Methods: Officially nominated national tuberculosis reference laboratories of all EU/EEA countries were asked to provide information on: laboratory routines for detection and identification of NTM, including drug sensitivity testing (DST) methods; data on the number and type of NTM species identified; coverage and completeness of the provided data on NTM; type and number of human specimens tested for NTM; and number of specimens tested for Mycobacterium tuberculosis complex and NTM. This information was summarized and the main results are described.Results: In total, 99 different NTM species were identified with M. avium, M. gordonae, M. xenopi , M. intracellulare, and M. fortuitum identified most frequently. Seven percent of the NTM species could not be identified. NTM was cultured from between 0.4-2.0% of the specimens (data from four countries). The laboratories use culturing methods optimised for M. tuberculosis complex. Identification is mainly carried out by a commercial line probe assay supplemented with sequencing. Most laboratories carried out DST for rapid growers and only at the explicit clinical request for slow growers.Conclusion: It is likely that the prevalence of NTM is underestimated because diagnostic procedures are not optimized specifically for NTM and isolates may not be referred to the national reference laboratory for identification. Due to the diagnostic challenges and the need to establish the clinical relevance of NTM, we recommend that countries should concentrate detection and identification in only few laboratories. © 2014 van der Werf et al.; licensee BioMed Central Ltd.


Hillemann D.,National Reference Laboratory for Mycobacteria | Hoffner S.,Swedish Institute for Communicable Disease Control | Cirillo D.,San Raffaele Scientific Institute | Drobniewski F.,Public Health England | And 2 more authors.
PLoS ONE | Year: 2013

Three networks/projects involving 27 European countries were established to investigate the quality of second-line drug (SLD) susceptibility testing with conventional and molecular methods. 1. The "Baltic-Nordic TB-Laboratory Network" comprised 11 reference laboratories in the Baltic-Nordic States. They performed SLD testing in the first phase with a panel of 20 Mycobacterium tuberculosis strains. After several laboratories made technical changes a second panel of 10 strains with a higher proportion of resistant strains were tested. Although the concordance for Ofloxacin, Kanamycin, and Capreomycin was consistently high, the largest improvements in performance were achieved for the analysis of Ofloxacin resistant (from 88.9 to 95.0%), and Capreomycin resistant (from 71.0 to 88.9%) strains. 2. Within the FP7 TB PAN-NET project (EU Grant agreement 223681) a quality control panel to standardize the EQA (External Quality Assurance) for first-line drugs (FLD) and SLD testing for phenotypic and molecular methods was established. The strains were characterized by their robustness, unambiguous results when tested, and low proportion of secondary drug resistances. 3. The (European Reference Laboratory Network-TB) ERLN-TB network analyzed four different panels for drug resistance testing using phenotypic and molecular methods; in two rounds in 2010 the 31 participating laboratories began with 5 strains, followed by 10 strains and 6 additional crude DNA extracts in 2011 and 2012 were examined by conventional DST and molecular methods. Overall, we demonstrated the importance of developing inter-laboratory networks to establish quality assurance and improvement of SLD testing of M. tuberculosis. © 2013 Hillemann et al.


Mohanty S.,KIIT University | Dal Molin M.,University of Zürich | Ganguli G.,KIIT University | Padhi A.,KIIT University | And 7 more authors.
Tuberculosis | Year: 2016

Mycobacterium tuberculosis (Mtb) survives inside the macrophages by modulating the host immune responses in its favor. The 6-kDa early secretory antigenic target (ESAT-6; esxA) of Mtb is known as a potent virulence and T-cell antigenic determinant. At least 23 such ESAT-6 family proteins are encoded in the genome of Mtb; however, the function of many of them is still unknown. We herein report that ectopic expression of Mtb Rv2346c (esxO), a member of ESAT-6 family proteins, in non-pathogenic Mycobacterium smegmatis strain (MsmRv2346c) AIDS host cell invasion and intracellular bacillary persistence. Further mechanistic studies revealed that MsmRv2346c infection abated macrophage immunity by inducing host cell death and genomic instability as evident from the appearance of several DNA damage markers. We further report that the induction of genomic instability in infected cells was due to increase in the hosts oxidative stress responses. MsmRv2346c infection was also found to induce autophagy and modulate the immune function of macrophages. In contrast, blockade of Rv2346c induced oxidative stress by treatment with ROS inhibitor N-acetyl-L-cysteine prevented the host cell death, autophagy induction and genomic instability in infected macrophages. Conversely, MtbΔRv2346c mutant did not show any difference in intracellular survival and oxidative stress responses. We envision that Mtb ESAT-6 family protein Rv2346c dampens antibacterial effector functions namely by inducing oxidative stress mediated genomic instability in infected macrophages, while loss of Rv2346c gene function may be compensated by other redundant ESAT-6 family proteins. Thus EsxO plays an important role in mycobacterial pathogenesis in the context of innate immunity. © 2015 Elsevier Ltd. All rights reserved.

Loading National Reference Laboratory for Mycobacteria collaborators
Loading National Reference Laboratory for Mycobacteria collaborators