Time filter

Source Type

Oberschleißheim, Germany

Skuballa J.,Karlsruhe Institute of Technology | Petney T.,Karlsruhe Institute of Technology | Pfaffle M.,Karlsruhe Institute of Technology | Oehme R.,Baden Wuerttemberg State Health Office | And 4 more authors.
Ticks and Tick-borne Diseases | Year: 2012

In order to determine whether European hedgehogs (Erinaceus europaeus and E. roumanicus) play a role in the epidemiological cycle of Borrelia burgdorferi sensu lato in Central Europe and Great Britain, tissue samples of hedgehogs from Germany (n=211), Austria (n=4), the Czech Republic (n=22), and the UK (n=32) were tested for the presence of these tick-borne pathogens. PCR for amplification of the B. burgdorferi s.l.-specific 5S-23S intergenic spacer region as well as the outer surface protein A (ospA) gene were used. B. burgdorferi s.l. DNA was detected in 35 of the 259 E. europaeus and in 2 of 10 E. roumanicus. B. burgdorferi prevalences in E. europaeus ranged from 0% (UK) to 37.5% (Czech Republic), for E. roumanicus from 0% (Czech Republic) to 50.0% (Austria). Sequencing revealed the occurrence of 3 different B. burgdorferi genospecies in E. europaeus: B. afzelii was the dominant genospecies, followed by B. bavariensis (previously B. garinii OspA serotype 4) and B. spielmanii, the latter was detected for the first time in Hamburg (Germany). B. afzelii and B. bavariensis were also found in E. roumanicus. Our results suggest that hedgehogs modulate the epidemiology of certain species of the B. burgdorferi s.l. complex, potentially affecting the distribution and abundance of individual B. burgdorferi s.l. genospecies in various habitats. We hypothesise that juvenile or individuals with low immune competence in particular, have a high reservoir potential for the 3 genospecies identified here. © 2011 Elsevier GmbH.

Mechai S.,University of Montreal | Margos G.,Ludwig Maximilians University of Munich | Margos G.,National Reference Center for Borrelia | Feil E.J.,University of Bath | And 3 more authors.
Applied and Environmental Microbiology | Year: 2015

Lyme disease, caused by the bacterium Borrelia burgdorferi sensu stricto, is an emerging zoonotic disease in Canada and is vectored by the blacklegged tick, Ixodes scapularis. Here we used Bayesian analyses of sequence types (STs), determined by multilocus sequence typing (MLST), to investigate the phylogeography of B. burgdorferi populations in southern Canada and the United States by analyzing MLST data from 564 B. burgdorferi-positive samples collected during surveillance. A total of 107 Canadian samples from field sites were characterized as part of this study, and these data were combined with existing MLST data for samples from the United States and Canada. Only 17% of STs were common between both countries, while 49% occurred only in the United States, and 34% occurred only in Canada. However, STs in southeastern Ontario and southwestern Quebec were typically identical to those in the northeastern United States, suggesting a recent introduction into this region from the United States. In contrast, STs in other locations in Canada (the Maritimes, Long Point, Ontario; and southeastern Manitoba) were frequently unique to those locations but were putative descendants of STs previously found in the United States. The picture in Canada is consistent with relatively recent introductions from multiple refugial populations in the United States. These data thus point to a geographic pattern of populations of B. burgdorferi in North America that may be more complex than simply comprising northeastern, midwestern, and Californian groups. We speculate that this reflects the complex ecology and spatial distribution of key reservoir hosts. © 2015, American Society for Microbiology.

Nunes M.,New University of Lisbon | Parreira R.,New University of Lisbon | Maia C.,Global Health and Tropical Medicine GHTM | Lopes N.,New University of Lisbon | And 2 more authors.
Infection, Genetics and Evolution | Year: 2016

In the last decades, several studies have reported pathogenic species of Borrelia related to those that cause Tick-borne Relapsing Fever (RF), but unexpectedly suggesting their transmission by hard ticks, known vectors of Borrelia burgdorferi sensu lato (B. burgdorferi s.l.) species, rather than by soft ticks. This study was designed to update the presence of B. burgdorferi s.l. species in ticks from several districts of mainland Portugal, where Ixodes ricinus had been previously described.Ticks (a total of 2915 specimens) were collected in seven districts throughout the country, and analyzed using molecular methods. Three nested-PCR protocols, targeting the flagellin gene (flaB), the intergenic spacer region (IGS) located between 5S and 23S rRNA, and the glpQ gene, and a conventional PCR targeting the 16S rRNA, were used for Borrelia DNA detection.Borrelia DNA was detected in 3% of the ticks from Braga, Vila Real, Lisboa, Setúbal, Évora and Faro districts. The obtained amplicons were sequenced and analyzed by BLASTn, and 15/63 (24%) matched with homologous sequences from Borrelia lusitaniae and 15/63 (24%) with B. garinii, being these the most prevalent species. DNA from B. burgdorferi sensu stricto (s.s.), B. valaisiana and B. afzelii were detected in 7/63 (11%), 6/63 (10%), and 2/63 (3%) of the specimens, respectively. Unexpectedly, DNA sequence (flaB) analysis from eight (13%) samples, two from Rhipicephalus sanguineus and six from Haemaphysalis punctata tick species, revealed high homology with RF-like Borrelia. Phylogenetic analyses obtained from three genetic markers (16S rRNA, flaB, and glpQ) confirmed their congruent inclusion in a strongly supported RF cluster, where they segregated in two subgroups which differ from the other Relapsing Fever species.Therefore, the results confirm the circulation of multiple species of B. burgdorferi s.l. over a wide geographic range, covering most of the Portuguese mainland territory. Surprisingly, the obtained data also revealed two putative Relapsing Fever-like Borrelia species in different species of hard ticks, possibly disclosing the circulation of novel RF-like Borrelia species with different associated tick vectors. © 2016 Elsevier B.V..

Rupprecht T.A.,Abteilung Radiologie | Fingerle V.,National Reference Center for Borrelia
Future Neurology | Year: 2011

Lyme disease is the most common human tick-borne disease in the northern hemisphere. This article describes the current knowledge of several aspects of Lyme neuroborreliosis. The epidemiology is reviewed first, with special respect to the difference between European and American disease. Then, the current knowledge about the pathogenesis of Lyme neuroborreliosis is presented, with emphasis on immune evasion strategies. Furthermore, the clinical picture of acute Lyme neuroborreliosis and the frequently discussed post-Lyme disease syndrome are critically discussed. The commonly used diagnostic strategies, as well as the relevance of the lymphocyte transformation test, CD57 +/CD3- cell count and CXCL13, are presented. Finally, the therapeutic options are described to give a balanced overview of all aspects of this disease. © 2011 Future Medicine Ltd.

Jungnick S.,Bavarian Health and Food Safety Authority | Jungnick S.,National Reference Center for Borrelia | Margos G.,Bavarian Health and Food Safety Authority | Margos G.,National Reference Center for Borrelia | And 14 more authors.
International Journal of Medical Microbiology | Year: 2015

MultiLocus sequence typing (MLST) is considered a powerful method to unveil relationships within bacterial populations and it constitutes an economical and fast alternative to whole genome sequencing. We used this method to understand whether there are differences in human pathogenicity within and between different Borrelia burgdorferi sensu lato species. Therefore, 136 strains from human patients or ticks from Europe were included in MLST analyses. The scheme employed used eight chromosomally located housekeeping genes (i.e. clpA, clpX, nifS, pepX, pyrG, recG, rplB and uvrA). We investigated Borrelia afzelii, one of the predominant species in Europe, and B. burgdorferi sensu stricto (s.s.), because it allowed comparative analysis to strains from the USA. We typed 113 patient isolates as well as 23 tick isolates. For further comparative purposes an additional 746 strains from Europe and the USA were included from the MLST website http://borrelia.mlst.net. We observed an overlap of the B. burgdorferi s.s. populations from Europe and the USA isolated from human patients while there was no overlap of the populations found in tick vectors. Further results indicate that B. afzelii was significantly less associated with disseminated infection than B. burgdorferi s.s. and that B. burgdorferi s.s. from Europe caused neuroborreliosis to a significantly greater extent than B. afzelii or B. burgdorferi s.s. in the USA. Our data suggest that there may be an evolutionary basis of differential interspecies pathogenicity in Borrelia. This was not evident within Borrelia species: we found the same sequence types in patients with disseminated or localized symptoms when the number of strains was sufficiently high. We hypothesize that the finding that B. burgdorferi s.s. in Europe is much more associated with neuroborreliosis than in the USA maybe linked to factor(s) related to the human host, the tick vector or the bacterium itself (e.g. plasmid content and structure). © 2015 Elsevier GmbH.

Discover hidden collaborations