Time filter

Source Type

Gaithersburg, MD, United States

Whitcraft A.K.,University of Maryland University College | Becker-Reshef I.,University of Maryland University College | Killough B.D.,National Office Systems | Justice C.O.,University of Maryland University College
Remote Sensing | Year: 2015

Agriculture is a highly dynamic process in space and time, with many applications requiring data with both a relatively high temporal resolution (at least every 8 days) and fine-to-moderate (FTM < 100 m) spatial resolution. The relatively infrequent revisit of FTM optical satellite observatories coupled with the impacts of cloud occultation have translated into a barrier for the derivation of agricultural information at the regional-to-global scale. Drawing upon the Group on Earth Observations Global Agricultural Monitoring (GEOGLAM) Initiative's general satellite Earth observation (EO) requirements for monitoring of major production areas, Whitcraft et al. (this issue) have described where, when, and how frequently satellite data acquisitions are required throughout the agricultural growing season at 0.05°, globally. The majority of areas and times of year require multiple revisits to probabilistically yield a view at least 70%, 80%, 90%, or 95% clear within eight days, something that no present single FTM optical observatory is capable of delivering. As such, there is a great potential to meet these moderate spatial resolution optical data requirements through a multi-space agency/multi-mission constellation approach. This research models the combined revisit capabilities of seven hypothetical constellations made from five satellite sensors-Landsat 7 Enhanced Thematic Mapper (Landsat 7 ETM+), Landsat 8 Operational Land Imager and Thermal Infrared Sensor (Landsat 8 OLI/TIRS), Resourcesat-2 Advanced Wide Field Sensor (Resourcesat-2 AWiFS), Sentinel-2A Multi-Spectral Instrument (MSI), and Sentinel-2B MSI-and compares these capabilities with the revisit frequency requirements for a reasonably cloud-free clear view within eight days throughout the agricultural growing season. Supplementing Landsat 7 and 8 with missions from different space agencies leads to an improved capacity to meet requirements, with Resourcesat-2 providing the largest incremental improvement in requirements met. The best performing constellation can meet 71%-91% of the requirements for a view at least 70% clear, and 45%-68% of requirements for a view at least 95% clear, varying by month. Still, gaps exist in persistently cloudy regions/periods, highlighting the need for data coordination and for consideration of active EO for agricultural monitoring. This research highlights opportunities, but not actual acquisition rates or data availability/access; systematic acquisitions over actively cropped agricultural areas as well as a policy which guarantees continuous access to high quality, interoperable data are essential in the effort to meet EO requirements for agricultural monitoring.

Zhang Q.,Hamner Institutes for Health Sciences | Bhattacharya S.,Hamner Institutes for Health Sciences | Andersen M.E.,Hamner Institutes for Health Sciences | Conolly R.B.,National Office Systems
Journal of Toxicology and Environmental Health - Part B: Critical Reviews | Year: 2010

The new paradigm envisioned for toxicity testing in the 21st century advocates shifting from the current animal-based testing process to a combination of in vitro cell-based studies, high-throughput techniques, and in silico modeling. A strategic component of the vision is the adoption of the systems biology approach to acquire, analyze, and interpret toxicity pathway data. As key toxicity pathways are identified and their wiring details elucidated using traditional and high-throughput techniques, there is a pressing need to understand their qualitative and quantitative behaviors in response to perturbation by both physiological signals and exogenous stressors. The complexity of these molecular networks makes the task of understanding cellular responses merely by human intuition challenging, if not impossible. This process can be aided by mathematical modeling and computer simulation of the networks and their dynamic behaviors. A number of theoretical frameworks were developed in the last century for understanding dynamical systems in science and engineering disciplines. These frameworks, which include metabolic control analysis, biochemical systems theory, nonlinear dynamics, and control theory, can greatly facilitate the process of organizing, analyzing, and understanding toxicity pathways. Such analysis will require a comprehensive examination of the dynamic properties of network motifsthe basic building blocks of molecular circuits. Network motifs like feedback and feedforward loops appear repeatedly in various molecular circuits across cell types and enable vital cellular functions like homeostasis, all-or-none response, memory, and biological rhythm. These functional motifs and associated qualitative and quantitative properties are the predominant source of nonlinearities observed in cellular dose response data. Complex response behaviors can arise from toxicity pathways built upon combinations of network motifs. While the field of computational cell biology has advanced rapidly with increasing availability of new data and powerful simulation techniques, a quantitative orientation is still lacking in life sciences education to make efficient use of these new tools to implement the new toxicity testing paradigm. A revamped undergraduate curriculum in the biological sciences including compulsory courses in mathematics and analysis of dynamical systems is required to address this gap. In parallel, dissemination of computational systems biology techniques and other analytical tools among practicing toxicologists and risk assessment professionals will help accelerate implementation of the new toxicity testing vision. Copyright © Taylor & Francis Group, LLC.

National Office Systems | Entity website

Business Storage Redefined Maximize your bottom line and peace of mind with storage and professional services fromNational Office Systems (NOS). Having the information and resources you need, when you need them easily accessible but effectively stored is important to your productivity ...

Matsuoka S.,National Institute of Genetics | Matsuoka S.,Johns Hopkins University | Gupta S.,National Institute of Genetics | Gupta S.,Defence Institute of Physiology and Allied science | And 6 more authors.
PLoS ONE | Year: 2014

In order to sustain lifelong production of gametes, many animals have evolved a stem cell-based gametogenic program. In the Drosophila ovary, germline stem cells (GSCs) arise from a pool of primordial germ cells (PGCs) that remain undifferentiated even after gametogenesis has initiated. The decision of PGCs to differentiate or remain undifferentiated is regulated by somatic stromal cells: specifically, epidermal growth factor receptor (EGFR) signaling activated in the stromal cells determines the fraction of germ cells that remain undifferentiated by shaping a Decapentaplegic (Dpp) gradient that represses PGC differentiation. However, little is known about the contribution of germ cells to this process. Here we show that a novel germline factor, Gone early (Goe), limits the fraction of PGCs that initiate gametogenesis. goe encodes a non-peptidase homologue of the Neprilysin family metalloendopeptidases. At the onset of gametogenesis, Goe was localized on the germ cell membrane in the ovary, suggesting that it functions in a peptidase-independent manner in cell-cell communication at the cell surface. Overexpression of Goe in the germline decreased the number of PGCs that enter the gametogenic pathway, thereby increasing the proportion of undifferentiated PGCs. Inversely, depletion of Goe increased the number of PGCs initiating differentiation. Excess PGC differentiation in the goe mutant was augmented by halving the dose of argos, a somatically expressed inhibitor of EGFR signaling. This increase in PGC differentiation resulted in a massive decrease in the number of undifferentiated PGCs, and ultimately led to insufficient formation of GSCs. Thus, acting cooperatively with a somatic regulator of EGFR signaling, the germline factor goe plays a critical role in securing the proper size of the GSC precursor pool. Because goe can suppress EGFR signaling activity and is expressed in EGF-producing cells in various tissues, goe may function by attenuating EGFR signaling, and thereby affecting the stromal environment. © 2014 Matsuoka et al.

Muscatello A.,National Office Systems | Devor R.,QinetiQ | Captain J.,National Office Systems
Earth and Space 2014: Engineering for Extreme Environments - Proceedings of the 14th Biennial International Conference on Engineering, Science, Construction, and Operations in Challenging Environments | Year: 2014

The multi-NASA center Mars Atmosphere and Regolith COllector/PrOcessor for Lander Operations (MARCO POLO) project was established to build and demonstrate a methane/oxygen propellant production system in a Mars analog environment. Work at the Kennedy Space Center (KSC) has focused on the Atmospheric Processing Module (APM). The purpose of the APM is to freeze carbon dioxide from a simulated Martian atmosphere at Martian pressures (a8 torr) by using dual cryocoolers. The resulting pressurized CO2 and hydrogen are fed to a Sabatier subsystem to make methane and water vapor. This paper covers (1) the design and selection of major hardware items, such as the cryocoolers, pumps, tanks, chillers, and membrane separators, (2) the determination of the optimal cold head design and flow rates needed to meet the collection requirement of 88 g CO2/hr for 14 hr, (3) the testing of the CO2 freezer subsystem, and (4) testing of the Sabatier subsystem.

Discover hidden collaborations