National Livestock Resources Research Institute NaLIRRI

Tororo, Uganda

National Livestock Resources Research Institute NaLIRRI

Tororo, Uganda
Time filter
Source Type

Nakiganda A.,National Livestock Resources Research Institute NaLIRRI | Mohamed A.,Food and Agriculture Organization FAO | Ojangole S.,National Agricultural Research Organization NARO | Kaukha R.,Ministry of Agriculture Animal Industry and Fisheries MAAIF
Livestock Research for Rural Development | Year: 2017

Milk is an important source of nutrition and the dairy sub sector is an important driver of food security for Uganda. Driven largely by the dairy, the livestock sector has maintained a positive growth rates averaging 3% per annum. Most of the sector is informal with 90% of the milk marketed through this channel. Uganda’s annual average consumption per capita is 58 litres, far below the 200litres per capita consumption recommended by the World Health Organization. Despite the dramatic increase in the quantity and value of milk and dairy products exported by Uganda, trade intensity was still very small (less than 1 percent). The study aimed to measure, analyze and interpret price incentives for milk in Uganda over the period 2005-2013. Yearly averages of domestic farm gate and wholesale prices were compared with reference prices calculated on the basis of the price of the commodity in the international market. The price gaps between reference prices and domestic prices along the commodity’s value chain indicated the extent to which incentives (positive gaps) or disincentives (negative gaps) were present at the farm gate and wholesale level. The price gaps were expressed in relative terms as a percentage of the reference price, referred to as the Nominal Rate of Protection (NRP). These key indicators were used to assess the effects of policy and market performance on prices. It was revealed that the dairy processors often sold processed milk at wholesale price below the reference prices resulting in negative price and negative nominal rate of protection. The farm gate indicators suggested that milk producers received substantial price disincentives over the period analysed. For instance, producer price of fresh milk was below the adjusted reference price for the entire period of 2005-2013 and above the observed reference price for only 2007. This was mainly due to the inefficient value chain, the competition for consumers between formal and informal markets and the monopsony tendencies by large processors. It was recommended that government provide an enabling policy framework to formalize the informal sector, reduce the size of the informal sector and ensure reasonable and stable farm gate prices to sustain milk production, and consumer prices that ensure affordable consumption of quality milk. © 2017, Fundacion CIPAV. All rights reserved.

Nakayima J.,Hokkaido University | Nakayima J.,National Livestock Resources Research Institute NaLIRRI | Nakao R.,Hokkaido University | Alhassan A.,P.O Box M | And 3 more authors.
Parasites and Vectors | Year: 2012

Background: African trypanosomes are extracellular protozoan parasites that are transmitted between mammalian hosts by the bite of an infected tsetse fly. Human African Trypanosomiasis (HAT) or sleeping sickness is caused by Trypanosoma brucei rhodesiense or T. brucei gambiense, while African Animal Trypanosomiasis (AAT) is caused mainly by T. vivax, T. congolense, T. simiae,T. evansi and T. brucei brucei. Trypanosomiasis is of public health importance in humans and is also the major constraint for livestock productivity in sub-Saharan African countries. Scanty information exists about the trypanosomiasis status in Ghana especially regarding molecular epidemiology. Therefore, this study intended to apply molecular tools to identify and characterize trypanosomes in Ghana. Methods. A total of 219 tsetse flies, 248 pigs and 146 cattle blood samples were collected from Adidome and Koforidua regions in Ghana in 2010. Initial PCR assays were conducted using the internal transcribed spacer one (ITS1) of ribosomal DNA (rDNA) primers, which can detect most of the pathogenic trypanosome species and T. vivax-specific cathepsin L-like gene primers. In addition, species- or subgroup-specific PCRs were performed for T. b. rhodesiense, T. b. gambiense, T. evansi and three subgroups of T. congolense. Results: The overall prevalence of trypanosomes were 17.4% (38/219), 57.5% (84/146) and 28.6% (71/248) in tsetse flies, cattle and pigs, respectively. T. congolense subgroup-specific PCR revealed that T. congolense Savannah (52.6%) and T. congolense Forest (66.0%) were the endemic subgroups in Ghana with 18.6% being mixed infections. T. evansi was detected in a single tsetse fly. Human infective trypanosomes were not detected in the tested samples. Conclusion: Our results showed that there is a high prevalence of parasites in both tsetse flies and livestock in the study areas in Ghana. This enhances the need to strengthen control policies and institute measures that help prevent the spread of the parasites. © 2012 Nakayima et al.; licensee BioMed Central Ltd.

Nakao R.,Hokkaido University | Magona J.W.,Hokkaido University | Magona J.W.,National Livestock Resources Research Institute NaLIRRI | Zhou L.,Hokkaido University | And 3 more authors.
Parasites and Vectors | Year: 2011

Background: The rickettsial bacterium Ehrlichia ruminantium is the causative agent of heartwater in ruminants. A better understanding of the population genetics of its different strains is, however, needed for the development of novel diagnostic tools, therapeutics and prevention strategies. Specifically, the development of effective vaccination policies relies on the proper genotyping and characterisation of field isolates. Although multi-locus sequence typing (MLST) has been recently developed, only strains from geographically restricted collections have been analysed so far. The expansion of the MLST database to include global strains with different geographic origins is therefore essential. In this study, we used a panel of reference strains from geographically diverse origins and field samples of E. ruminantium detected from its vector, Amblyomma variegatum, in heartwater-endemic areas in Uganda. Results: A total of 31 novel alleles (six, four, six, three, two, five, three, and two for gltA, groEL, lepA, lipA, lipB, secY, sodB, and sucA loci, respectively) and 19 novel sequence types (STs) were identified. Both neighbour-joining and minimum spanning tree analyses indicated a high degree of genetic heterogeneity among these strains. No association was observed between genotypes and geographic origins, except for four STs from West African countries. When we performed six different tests for recombination (GeneConv, Bootscan, MaxChi, Chimaera, SiScan, and 3Seq) on concatenated sequences, four possible recombination events were identified in six different STs. All the recombination breakpoints were located near gene borders, indicating the occurrence of intergenic recombination. All four STs that localized to a distinct group in clustering analysis showed evidence of identical recombination events, suggesting that recombination may play a significant role in the diversification of E. ruminantium. Conclusions: The compilation of MLST data set across the African continent will be particularly valuable for the understanding of the existing genetic diversity of field isolates in African countries. Comprehensive information on the degree of cross-protection between strains and further understanding of possible relationships between genotypes and phenotypes such as vaccine efficacy are expected to lead to the development of region-specific vaccination strategies. © 2011 Nakao et al; licensee BioMed Central Ltd.

Kabi F.,Makerere University | Kabi F.,National Livestock Resources Research Institute NaLIRRI | Muwanika V.,Makerere University | Masembe C.,Makerere University
Preventive Veterinary Medicine | Year: 2015

Indigenous cattle populations exhibit various degrees of agro-ecological fitness and provide desirable opportunities for investments to improve sustainable production for better rural small-scale farmers' incomes globally. However, they could be a source of infection to their attendants and other susceptible livestock if their brucellosis status remains unknown. This study investigated the spatial distribution of Brucella antibodies among indigenous cattle populations in Uganda. Sera from a total of 925 indigenous cattle (410 Ankole Bos taurus indicus, 50 Nganda and 465 East African Shorthorn Zebu (EASZ) - B. indicus) obtained randomly from 209 herds spread throughout Uganda were sequentially analysed for Brucella antibodies using the indirect (I) and competitive (C) enzyme linked Immuno-sorbent assays (ELISA). Recent incidences of abortion within the previous 12 months and routine hygienic practices during parturition were explored for public health risks. Brucella antibodies occurred in approximately 8.64% (80/925) and 28.70% (95% CI: 22.52, 34.89) of the sampled individual cattle and herds, respectively. Findings have shown that Ankole and EASZ cattle had similar seroprevalences. Indigenous cattle from the different study agro-ecological zones (AEZs) exhibited varying seroprevalences ranging from approximately 1.78% (95% CI: 0, 5.29) to 19.67% (95% CI: 8.99, 30.35) in the Lake Victoria Crescent (LVC) and North Eastern Drylands (NED) respectively. Significantly higher odds for Brucella antibodies occurred in the NED (OR: 3.40, 95% CI: 1.34, 8.57, p=. 0.01) inhabited by EASZ cattle compared to the KP (reference category) AEZ. Recent incidences of abortions within the previous 12 months were significantly (. p<. 0.001) associated with seropositive herds. These findings add critical evidence to existing information on the widespread occurrence of brucellosis among indigenous cattle populations in Uganda and could guide allocation of meagre resources for awareness creation. And deployment of control strategies including culling of older cattle and those which have aborted during advanced gestation, enforcement of hygiene practices and mass vaccination. © 2015 Elsevier B.V..

Kabi F.,Makerere University | Kabi F.,National Livestock Resources Research Institute NaLIRRI | Masembe C.,Makerere University | Muwanika V.,Makerere University | And 2 more authors.
Parasites and Vectors | Year: 2014

Methods: The occurrence of non-clinical T. parva infection among apparently healthy 925 indigenous cattle from 209 herds spread out in 10 agro-ecological zones (AEZs) was determined using a nested PCR assay. The influence of AEZ, breed, sex, age and farmers' ranking of ECF importance were interrogated for influence of non-clinical parasite occurrence.Background: Non-clinical Theileria parva infection among indigenous cattle occurs upon recovery from primary disease during the first year of life. Continuous exposure to infection through contaminated tick infestations with absence of clinical disease gives rise to endemic stability. Endemic stable populations may become sources of infection if contaminated tick vectors are shared with susceptible exotic cattle. This study aimed at establishing a nationwide distribution of non-clinical T. parva infection among indigenous cattle populations to inform novel control strategies.Results: The overall prevalence of non-clinical T. parva infection was 30% (278/925). A gradual increase of non-clinical T. parva infection was observed ranging from 17% (95% CI: 0.03 - 0.23) to 43% (95% CI: 0.3 - 0.55) in the North Eastern Savannah Grasslands (NESG) to the Western Highland Ranges (WHR) respectively. A similarly associated 18% (95% CI: 0.07 - 0.28) and 35% (95% CI: 0.3 - 0.39) non-clinical parasite prevalence was observed among the East African shorthorn Zebu (EASZ) and Ankole cattle respectively. Average herd level non-clinical T. parva prevalence was 28%, ranging from zero to 100%. The likelihood of non-clinical T. parva infection was 35.5% greater in the western highlands compared to the northeastern semi-arid AEZs.Conclusions: Non-clinical T. parva occurs countrywide, structured along patterns of AEZ and breed gradients. These findings may guide policy formulation, deployment of integrated control strategies and local cattle improvement programs. © 2014 Kabi et al.; licensee BioMed Central Ltd.

Magona J.W.,National Livestock Resources Research Institute NaLIRRI | Walubengo J.,National Livestock Resources Research Institute NaLIRRI | Kabi F.,National Livestock Resources Research Institute NaLIRRI
Tropical Animal Health and Production | Year: 2011

A cross-sectional study was conducted in Soroti district of Uganda to establish important traits of Nkedi Zebu and Ankole cattle regarding their production performance responses to natural infections of trypanosomes, gastrointestinal nematodes, Theileria parva, Babesia bigemina, Anaplasma marginale and tick infestations. Over four visits between October 2006 to August 2007, tick counts were performed and blood, faecal samples and sera were collected from the Nkedi Zebu (295) and Ankole (165) cattle from 86 herds in six locations per visit. Low parasitological prevalence of trypanosome infection (<6%) and high prevalence of gastrointestinal nematode infections (>30%) with low faecal egg counts (110-300 eggs per gramme (EPG)) were observed in the Nkedi Zebu and Ankole cattle. Both breeds had high, moderate and low mean counts of Rhipicephalus appendiculatus (18.0-24.0), Rhipecephalus (Boophilus) decoloratus (3.6-10.3) and Amblyomma variegatum ticks (1.7-4.3), respectively. In addition, both breeds had similar mean packed cell volumes (26.4-31.2) and a similar percentage of animals were anaemic (14.5-36.6%). The Nkedi Zebu cattle further had higher mean optical density (OD) values for antibodies against T. parva (1.093-1.445) and A. marginale infections (0. 573-0.583), and significantly (P < 0.001) higher mean OD values of antibodies against B. bigemina infections (1.07-2. 175) than the Ankole cattle: T. parva (1.030-1.302); A. marginale (0.442-0.603) and B. bigemina infections (0.863-2. 154). The Ankole cows produced significantly more (P < 0.001) milk per day (2.68L) than the Nkedi Zebu cows (1.98 L), and the Ankole oxen had significantly higher (P < 0.05) draught power output (2.57 days/acre) than the Nkedi Zebu oxen (2.93 days/acre). Liveweights of calves aged 0-12 months of both breeds were comparable, suggesting that the Nkedi Zebu and Ankole cattle under similar disease challenge exhibited similar growth rates. In conclusion, the Nkedi Zebu cattle seem to possess a higher degree of disease resistance against endemic parasitic diseases, while the Ankole cattle seem to possess a moderate degree of disease resistance coupled with a moderate production potential. © 2011 Springer Science+Business Media B.V.

Muwanika V.,Makerere University | Kabi F.,Makerere University | Kabi F.,National Livestock Resources Research Institute NaLIRRI | Masembe C.,Makerere University
Ticks and Tick-borne Diseases | Year: 2016

Theileria parva causes East Coast Fever (ECF) a protozoan infection which manifests as a non-symptomatic syndrome among endemically stable indigenous cattle populations. Knowledge of the current genetic diversity and population structure of T. parva is critical for predicting pathogen evolutionary trends to inform development of effective control strategies. In this study the population genetic structure of 78 field isolates of T. parva from indigenous cattle (Ankole, n = 41 and East African shorthorn Zebu (EASZ), n = 37) sampled from the different agro ecological zones (AEZs) of Uganda was investigated. A total of eight mini- and micro-satellite markers encompassing the four chromosomes of T. parva were used to genotype the study field isolates. The genetic diversity of the surveyed T. parva populations was observed to range from 0.643 ± 0.55 to 0.663 ± 0.41 among the Central and Western AEZs respectively. The overall Wright's F index showed significant genetic variation between the surveyed T. parva populations based on the different AEZs and indigenous cattle breeds (FST = 0.133, p < 0.01) and (FST = 0.101, p < 0.01) respectively. Significant pairwise population genetic differentiations (p < 0.05) were observed with FST values ranging from 0.048 to 0.173 between the eastern and northern, eastern and western populations respectively. The principal component analysis (PCA) showed a high level of genetic and geographic sub-structuring among populations. Linkage disequilibrium was observed when populations from all the study AEZs were treated as a single population and when analysed separately. On the overall, the significant genetic diversity and geographic sub-structuring exhibited among the study T. parva isolates has critical implications for ECF control. © 2015 Elsevier GmbH.

Magona J.W.,National Livestock Resources Research Institute NaLIRRI | Galiwango T.,National Livestock Resources Research Institute NaLIRRI | Walubengo J.,National Livestock Resources Research Institute NaLIRRI | Mukiibi G.,National Livestock Resources Research Institute NaLIRRI
Small Ruminant Research | Year: 2013

Increasing occurrence of outbreaks of Rift Valley fever (RVF) has been reported in Kenya, Somalia, Tanzania, Sudan, Madagascar and South Africa during heavy and prolonged, often unseasonal, rainfall from 1997 to 2009. Given Uganda's location in the endemic zone of RVF, surveys were conducted on goat farms with a view to establishing presence of RVF virus and existence of its mosquito vectors. A total of 1470 sera were tested using the IgG ELISA and subsequently 700 sera tested using the Virus Neutralization Test (VNT) and a species identification survey for mosquitoes undertaken. The findings revealed an overall seroprevalence of anti-RVF virus IgG of 9.8% (95% CI, 8.5-11.1%). VNT revealed a seroprevalence of 24.3% (95% CI, 21.1-27.5%). The following specific farms had a higher likelihood to have seropositive goats: Lubega (OR 3.5 (1.1-11.3)), Katabarwa (OR 6.4 (2.0-20.5)) and Maduwa (OR 5.3 (1.6-16.7)). Mubende goats were 4 times (OR 4.2 (1.3-13.5)) more likely to be seropositive to RVF virus than Boer goats, and adult goats were 2 times (OR 2.2 (1.5-3.3)) more likely to be seropositive to RVF virus than young ones. Mosquito species found, included, Anopheles gambiae (71.2%), Culex sp. (21.5%), Anopheles funestus (6.5%), Aedes sp. (0.7%) and Mansonia sp. (0.2%). High prevalence of anti-RVFV IgG in goats in some locations together with presence of RVF virus neutralizing antibodies (up to 1:80) suggested that the RVF virus is endemic in goats in Uganda. Presence of RVF virus coupled with existence of Aedes sp. and Culex sp. mosquito vectors are likely to lead to RVF outbreaks once the mosquito population flares-up due to flooding and increased RVF virus amplification occurs. © 2013 Elsevier B.V.

Bieler S.,Foundation for Innovative New Diagnostics FIND | Matovu E.,Makerere University | Mitashi P.,University of Kinshasa | Ssewannyana E.,National Livestock Resources Research Institute NaLIRRI | And 3 more authors.
Acta Tropica | Year: 2012

Confirmatory diagnosis of African trypanosomiasis relies on demonstration of parasites in body fluids by bright field microscopy. The parasitaemia in infected patients and animals is usually low, and concentration methods are used to try and increase the chances of seeing parasites. Recently, fluorescence microscopes using light-emitting diodes (LED) have been developed. Since they emit strong light, their use does not require a dark room, making field application a possibility. We have combined LED fluorescence microscopy with lysis of red blood cells (RBC) to improve the sensitivity and speed of detecting trypanosomes. In studies conducted at four centers in Uganda and the Democratic Republic of the Congo, parasitaemic blood was serially diluted and the RBCs lysed using commercial buffer. Samples were then concentrated by centrifugation, and different volumes of the sediment used to make thin and thick smears. Next, these were stained with acridine orange or Giemsa, and examined using an LED microscope under fluorescence or bright light, respectively. Detection of parasites was significantly improved by RBC lysis and concentration, regardless of the staining and microscopy method used. Further improvements were made when smears were prepared using larger volumes of sediment. The best results were obtained with thin smears prepared using 20. μl of sediment and stained with acridine orange. The time taken to see the first parasite was dramatically reduced when smears were examined by LED fluorescence microscopy, compared to bright light. LED fluorescence microscopy was found to be easier and requiring less visual effort than bright field microscopy. These studies demonstrate the potential for incremental improvement in detection of Trypanosoma brucei by combining LED fluorescence microscopy with RBC lysis and concentration. The lysis and concentration method may also be useful in sample preparation for other diagnostic tests for trypanosomiasis. © 2011 Elsevier B.V.

PubMed | National Livestock Resources Research Institute NaLIRRI and Mississippi State University
Type: | Journal: Database : the journal of biological databases and curation | Year: 2015

There is an urgent need for a unified resource that integrates trans-disciplinary annotations of emerging and reemerging animal infectious and zoonotic diseases. Such data integration will provide wonderful opportunity for epidemiologists, researchers and health policy makers to make data-driven decisions designed to improve animal health. Integrating emerging and reemerging animal infectious and zoonotic disease data from a large variety of sources into a unified open-access resource provides more plausible arguments to achieve better understanding of infectious and zoonotic diseases. We have developed a model for interlinking annotations of these diseases. These diseases are of particular interest because of the threats they pose to animal health, human health and global health security. We demonstrated the application of this model using brucellosis, an infectious and zoonotic disease. Preliminary annotations were deposited into VetBioBase database ( This database is associated with user-friendly tools to facilitate searching, retrieving and downloading of disease-related information. Database URL:

Loading National Livestock Resources Research Institute NaLIRRI collaborators
Loading National Livestock Resources Research Institute NaLIRRI collaborators