Time filter

Source Type

Facure M.H.M.,National Laboratory for Nanotechnology in Agribusiness LNNA | Facure M.H.M.,Federal University of São Carlos | Mercante L.A.,National Laboratory for Nanotechnology in Agribusiness LNNA | Mattoso L.H.C.,National Laboratory for Nanotechnology in Agribusiness LNNA | And 2 more authors.
Talanta | Year: 2017

Organophosphate (OP) compounds impose significant strains on public health, environmental/food safety and homeland security, once they have been widely used as pesticides and insecticides and also display potential to be employed as chemical warfare agents by terrorists. In this context, the development of sensitive and reliable chemical sensors that would allow in-situ measurements of such contaminants is highly pursued. Here we report on a free-enzyme impedimetric electronic tongue (e-tongue) used in the analysis of organophosphate pesticides comprising four sensing units based on graphene hybrid nanocomposites. The nanocomposites were prepared by reduction of graphene oxide in the presence of conducting polymers (PEDOT:PSS and polypyrrole) and gold nanoparticles (AuNPs), which were deposited by drop casting onto gold interdigitated electrodes. Impedance spectroscopy measurements were collected in triplicate for each sample analyzed, and the electrical resistance data were treated by Principal Component Analysis (PCA), revealing that the system was able to discriminate OPs at nanomolar concentrations. In addition, the electronic tongue system could detect OPs in real samples, where relations between the principal components and the variation of pesticides in a mixture were established, proving to be useful to analyze and monitor mixtures of OP pesticides. The materials employed provided sensing units with high specific surface area and high conductivity, yielding the development of a sensor with suitable stability, good reproducibility, and high sensitivity towards pesticide samples, being able to discriminate concentrations as low as 0.1 nmol L−1. Our results indicate that the e-tongue system can be used as a rapid, simple and low cost alternative in the analyses of OPs pesticide solutions below the concentration range permitted by legislation of some countries. © 2017 Elsevier B.V.


Migliorini F.L.,National Laboratory for Nanotechnology in Agribusiness LNNA | Sanfelice R.C.,National Laboratory for Nanotechnology in Agribusiness LNNA | Pavinatto A.,National Laboratory for Nanotechnology in Agribusiness LNNA | Steffens J.,URI Integrated Regional University Brazil | And 2 more authors.
Microchimica Acta | Year: 2017

The authors have developed an electrochemical sensor for cadmium(II) that is based on the use of a conventional fluorine doped tin oxide (FTO) electrode modified with polymeric electrospun nanofibers consisting of polyamide 6 (PA6) and chitosan which were further modified with gold nanoparticles (AuNPs). The materials were characterized by infrared spectroscopy, thermal analysis (DSC and TGA), and scanning electron microscopy. The modified electrode was applied to the detection of Cd(II) by square wave voltammetry. Response is linear in the 25 to 75 μg ⋅ L−1 Cd(II) concentration range, with a detection limit of 0.88 μg ⋅ L−1. The relative standard deviations are 4.6% and 8.2% for intra- and inter-electrode measurements, respectively. Mercury(II), lead(II), and copper(II) did not significantly interfere. [Figure not available: see fulltext.] © 2017 Springer-Verlag Wien


Zamora-Galvez A.,Catalan Institute of Nanoscience and Nanotechnology | Ait-Lahcen A.,Catalan Institute of Nanoscience and Nanotechnology | Ait-Lahcen A.,Hassan II University | Mercante L.A.,Catalan Institute of Nanoscience and Nanotechnology | And 5 more authors.
Analytical Chemistry | Year: 2016

Sulfonamides are known not only to be antimicrobial drugs that lead to antimicrobial resistance but also to be chemotherapeutic agents that may be allergenic and potentially carcinogenic, which represents a potentially hazardous compound once present in soil or water. Herein, a hybrid material based on molecularly imprinted polymer (MIP)-decorated magnetite nanoparticles for specific and label-free sulfonamide detection is reported. The composite has been characterized using different spectroscopic and imaging techniques. The magnetic properties of the composite are used to separate, preconcentrate, and manipulate the analyte which is selectively captured by the MIP onto the surface of the composite. Screen printed electrodes have been employed to monitor the impedance levels of the whole material, which is related to the amount of the captured analyte, via electrochemical impedance spectroscopy. This composite-based sensing system exhibits an extraordinary limit of detection of 1 × 10-12 mol L-1 (2.8 × 10-4 ppb) (S/N = 3), which is close to those obtained with liquid chromatography and mass spectrometry, and it was demonstrated to screen sulfamethoxazole in a complex matrix such as seawater, where according to the literature sulfonamides content is minimum compared with other environmental samples. © 2016 American Chemical Society.


Pavinatto A.,National Laboratory for Nanotechnology in Agribusiness LNNA | Mercante L.A.,National Laboratory for Nanotechnology in Agribusiness LNNA | Leandro C.S.,National Laboratory for Nanotechnology in Agribusiness LNNA | Leandro C.S.,Federal University of São Carlos | And 3 more authors.
Journal of Electroanalytical Chemistry | Year: 2015

Endocrine disruptor compounds (EDCs) are environmental pollutant chemicals that can affect the endocrine system of some organisms. Such compounds are excreted by humans and released into aquatic environments via sewage treatment plant. One example of EDC is 17α-ethinylestradiol (EE2), a synthetic estrogen widely used as oral contraceptive and considered a powerful estrogenic. Although there has been a deep concern about the EDC presence in surface and drinking waters, there are only a few works in the scientific literature regarding EE2 electrochemical detection. Here we present the development of a new nanostructured sensing platform aimed at the electrochemical detection of EE2. The platform was based on a fluorine doped tin oxide (FTO) electrode coated with nanostructured Layer-by-Layer (LbL) films of chitosan/multi-walled carbon nanotubes (Chi/CNTs). The physicochemical properties of the films were evaluated by atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR). Electrochemical characterization revealed a decrease in the film resistance as the number of bilayers increased from 1 to 3, as a direct consequence of the augment in the amount of conductive material (CNTs). Cyclic voltammetric measurements showed that the three bilayer electrode, namely FTO-(Chi/CNTs)3, are suitable to EE2 detection, through an irreversible and adsorption-controlled electrochemical oxidation process. Square Wave Voltammetry (SWV) yielded a linear response for EE2 detection in range from 0.05 to 20 μmol L- 1, with a detection limit of 0.09 μmol L- 1 (S/N = 3). The sensor showed a good reproducibility with the relative standard deviation (RSD) equal to 3.2% and 6.6% to intra- and inter-electrode, respectively. Furthermore, the sensor platform showed to be suitable to EE2 selective electrochemical detection, with no significant interference from common interfering compounds. The concepts behind the EE2 electrochemical behavior can be potentially harnessed for designing new electrochemical sensors and biosensors with the architecture described here. © 2015 Elsevier B.V. All rights reserved.


Andre R.S.,National Laboratory for Nanotechnology in Agribusiness LNNA | Andre R.S.,Federal University of São Carlos | Pavinatto A.,National Laboratory for Nanotechnology in Agribusiness LNNA | Mercante L.A.,National Laboratory for Nanotechnology in Agribusiness LNNA | And 6 more authors.
RSC Advances | Year: 2015

Heterostructured nanomaterials have attracted increasing interest because of their novel and distinct optical and electrical properties, finding applications in devices and chemical sensors. Here we report a new electrochemical platform based on the modification of fluorine doped tin oxide (FTO) electrodes with polyamide 6/polyaniline (PA6/PANI) electrospun nanofibers decorated with ZnO nanoparticles. The nanoparticles were synthesized by a co-precipitation method, followed by hydrothermal treatment; the route was optimized in order to obtain particles of small average diameter (45 nm). Polymeric nanofibers were obtained by the electrospinning technique and further subjected to ZnO modification by nanoparticle impregnation. SEM images confirmed the uniform distribution of ZnO nanoparticles adsorbed onto the nanofiber surface, the amount of which was estimated to be 4% w/w, according to thermal gravimetric analysis (TGA). According to the electrochemical characterization, an improvement in electron transfer kinetics and increase in electroactive area was observed for the ZnO-modified FTO electrode. The modified electrode was employed for monitoring hydrazine, and yielded a detection limit of 0.35 μmol L-1. Our results indicate that the novel sensing platform based on the adsorption of ZnO nanoparticles onto the surface of electrospun nanofibers can be potentially harnessed for electrochemical sensor and biosensor applications. © The Royal Society of Chemistry.


Orozco J.,Catalan Institute of Nanoscience and Nanotechnology | Mercante L.A.,Catalan Institute of Nanoscience and Nanotechnology | Mercante L.A.,National Laboratory for Nanotechnology in Agribusiness LNNA | Pol R.,Catalan Institute of Nanoscience and Nanotechnology | And 2 more authors.
Journal of Materials Chemistry A | Year: 2016

Persistent organic pollutants (POPs) are ubiquitous in the environment as a result of modern industrial processes. We present an effective POPs decontamination strategy based on their dynamic adsorption at the surface of reduced graphene oxide (rGO)-coated silica (SiO2)-Pt Janus magnetic micromotors for their appropriate final disposition. While the motors rapidly move in a contaminated solution, the adsorption of POPs efficiently takes place in a very short time. Characterization of the micromotors both from the materials and from the motion point of view was performed. Polybrominated diphenyl ethers (PBDEs) and 5-chloro-2-(2,4-dichlorophenoxy) phenol (triclosan) were chosen as model POPs and the removal of the contaminants was efficiently achieved. The rGO-coated micromotors demonstrated superior adsorbent properties with respect to their concomitant GO-coated micromotors, static rGO-coated particles and dynamic silica micromotors counterparts. The extent of decontamination was studied over the number of micromotors, whose magnetic properties were used for their collection from environmental samples. The adsorption properties were maintained for 4 cycles of micromotors reuse. The new rGO-coated SiO2 functional material-based micromotors showed outstanding capabilities towards the removal of POPs and their further disposition, opening up new possibilities for efficient environmental remediation of these hazardous compounds. © 2016 The Royal Society of Chemistry.


Mercante L.A.,National Laboratory for Nanotechnology in Agribusiness LNNA | Pavinatto A.,National Laboratory for Nanotechnology in Agribusiness LNNA | Iwaki L.E.O.,University of Sao Paulo | Scagion V.P.,National Laboratory for Nanotechnology in Agribusiness LNNA | And 6 more authors.
ACS Applied Materials and Interfaces | Year: 2015

The use of nanomaterials as an electroactive medium has improved the performance of bio/chemical sensors, particularly when synergy is reached upon combining distinct materials. In this paper, we report on a novel architecture comprising electrospun polyamide 6/poly(allylamine hydrochloride) (PA6/PAH) nanofibers functionalized with multiwalled carbon nanotubes, used to detect the neurotransmitter dopamine (DA). Miscibility of PA6 and PAH was sufficient to form a single phase material, as indicated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), leading to nanofibers with no beads onto which the nanotubes could adsorb strongly. Differential pulse voltammetry was employed with indium tin oxide (ITO) electrodes coated with the functionalized nanofibers for the selective electrochemical detection of dopamine (DA), with no interference from uric acid (UA) and ascorbic acid (AA) that are normally present in biological fluids. The response was linear for a DA concentration range from 1 to 70 μmol L-1, with detection limit of 0.15 μmol L-1 (S/N = 3). The concepts behind the novel architecture to modify electrodes can be potentially harnessed in other electrochemical sensors and biosensors. © 2015 American Chemical Society.


Manzoli A.,National Laboratory for Nanotechnology in Agribusiness LNNA | Shimizu F.M.,National Laboratory for Nanotechnology in Agribusiness LNNA | Shimizu F.M.,University of Sao Paulo | Mercante L.A.,National Laboratory for Nanotechnology in Agribusiness LNNA | And 4 more authors.
Physical Chemistry Chemical Physics | Year: 2014

The fabrication of nanostructured films with tailored properties is essential for many applications, particularly with materials such as polyaniline (PANI) whose electrical characteristics may be easily tuned. In this study we report the one-step synthesis of AgCl-PANI nanocomposites that could form layer-by-layer (LbL) films with poly(sodium 4-styrenesulfonate) (PSS) and be used for electronic tongues (e-tongues). The first AgCl-PANI layer was adsorbed on a quartz substrate according to a nucleation-and-growth mechanism explained using the Johnson-Mehl-Avrami (JMA) model, revealing a 3D film growth confirmed by atomic force microscopy (AFM) measurements for the AgCl-PANI/PSS LbL films. In contrast to conventional PANI-containing films, the AgCl-PANI/PSS LbL films deposited on interdigitated electrodes exhibited electrical resistance that was practically unaffected by changes in pH from 4 to 9, and therefore these films can be used in e-tongues for both acidic and basic media. With a sensor array made of AgCl-PANI/PSS LbL films with different numbers of bilayers, we demonstrated the suitability of the AgCl-PANI nanocomposite for an e-tongue capable of clearly discriminating the basic tastes from salt, acid and umami solutions. Significantly, the hybrid AgCl-PANI nanocomposite is promising for any application in which PANI de-doping at high pH is to be avoided. This journal is © the Partner Organisations 2014.


PubMed | National Laboratory for Nanotechnology in Agribusiness LNNA
Type: Journal Article | Journal: Physical chemistry chemical physics : PCCP | Year: 2014

The fabrication of nanostructured films with tailored properties is essential for many applications, particularly with materials such as polyaniline (PANI) whose electrical characteristics may be easily tuned. In this study we report the one-step synthesis of AgCl-PANI nanocomposites that could form layer-by-layer (LbL) films with poly(sodium 4-styrenesulfonate) (PSS) and be used for electronic tongues (e-tongues). The first AgCl-PANI layer was adsorbed on a quartz substrate according to a nucleation-and-growth mechanism explained using the Johnson-Mehl-Avrami (JMA) model, revealing a 3D film growth confirmed by atomic force microscopy (AFM) measurements for the AgCl-PANI/PSS LbL films. In contrast to conventional PANI-containing films, the AgCl-PANI/PSS LbL films deposited on interdigitated electrodes exhibited electrical resistance that was practically unaffected by changes in pH from 4 to 9, and therefore these films can be used in e-tongues for both acidic and basic media. With a sensor array made of AgCl-PANI/PSS LbL films with different numbers of bilayers, we demonstrated the suitability of the AgCl-PANI nanocomposite for an e-tongue capable of clearly discriminating the basic tastes from salt, acid and umami solutions. Significantly, the hybrid AgCl-PANI nanocomposite is promising for any application in which PANI de-doping at high pH is to be avoided.


PubMed | National Laboratory for Nanotechnology in Agribusiness LNNA
Type: Journal Article | Journal: ACS applied materials & interfaces | Year: 2015

The use of nanomaterials as an electroactive medium has improved the performance of bio/chemical sensors, particularly when synergy is reached upon combining distinct materials. In this paper, we report on a novel architecture comprising electrospun polyamide 6/poly(allylamine hydrochloride) (PA6/PAH) nanofibers functionalized with multiwalled carbon nanotubes, used to detect the neurotransmitter dopamine (DA). Miscibility of PA6 and PAH was sufficient to form a single phase material, as indicated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), leading to nanofibers with no beads onto which the nanotubes could adsorb strongly. Differential pulse voltammetry was employed with indium tin oxide (ITO) electrodes coated with the functionalized nanofibers for the selective electrochemical detection of dopamine (DA), with no interference from uric acid (UA) and ascorbic acid (AA) that are normally present in biological fluids. The response was linear for a DA concentration range from 1 to 70 mol L(-1), with detection limit of 0.15 mol L(-1) (S/N = 3). The concepts behind the novel architecture to modify electrodes can be potentially harnessed in other electrochemical sensors and biosensors.

Loading National Laboratory for Nanotechnology in Agribusiness LNNA collaborators
Loading National Laboratory for Nanotechnology in Agribusiness LNNA collaborators