Time filter

Source Type

Christy A.J.,Tuberculosis Research Center | Dharman K.,Tuberculosis Research Center | Dhandapaani G.,Tuberculosis Research Center | Palaniyandi K.,Tuberculosis Research Center | And 4 more authors.
Vaccine | Year: 2012

Developing an efficacious vaccine is one of the highest priorities in tuberculosis research. A vaccine based on T cell epitopes representing multiple antigens is an ideal approach to generate effective cellular immunity against the disease. In the present study, we have selected four T cell epitopes from four well defined Mycobacterium tuberculosis antigens, Ag85C (Rv2903c), 10-kDa culture filtrate protein (CFP-10) (Rv3874), PPE68 (Rv3873) and INV (Rv1478). The epitope encoding genes were grafted into a Cpn 10 based epitope delivery system. The cpn 10-epitope chimeras were further cloned and expressed in BCG to obtain four rBCGs (BCG::CFP, BCG::FBP, BCG::PPE and BCG::INV). Both cellular and humoral immune responses induced by these r-BCG strains were evaluated in BALB/c mice after subcutaneous injection of a single dose of 1×106CFU of the individual rBCGs. Compared to the parent BCG immunized animals the splenocytes derived from rBCG vaccinated groups showed greater antigen specific proliferation, characterized with higher IFN-γ response and reduced IL-4 secretion. Also rBCG vaccination was able to induce specific humoral immune response with an enhanced IgG2a/IgG1 ratio. The rBCGs therefore favor an epitope specific Th1 type response, which is known to be important for mycobacterial immunity. Further when two of the rBCGs (BCG::CFP and BCG::FBP) were tested for their protective efficacy both the rBCGs were comparable to BCG in a H37Rv challenge study performed in guinea pigs. © 2012 Elsevier Ltd.

Sakthi S.,National Institute for Research in Tuberculosis | Palaniyandi K.,National Institute for Research in Tuberculosis | Gupta U.D.,National JALMA Institute for Leprosy and Other Mycabacterial Diseases | Gupta P.,National JALMA Institute for Leprosy and Other Mycabacterial Diseases | Narayanan S.,National Institute for Research in Tuberculosis
Vaccine | Year: 2016

Bacterial lipoproteins are a functionally diverse class of membrane anchored proteins. Lipoproteins constitute nearly 2.5% of the Mycobacterium tuberculosis proteome. Inactivation of genes coding for individual lipoproteins results in attenuated phenotype of the mutants. LpqS is a lipoprotein highly conserved among slow growing pathogenic mycobacteria. Our previous study has shown that the lpqS gene deletion mutant of M. tuberculosis (MtbδlpqS) poorly replicates in THP1-(human acute monocytic leukemia cell line) derived macrophagic cell line. In addition, guinea pigs, when infected with the mutant strain exhibited significantly reduced bacterial burden and pathological damage in the infected tissues in comparison with the parental strain infected group. Subsequently, we evaluated the protective efficacy of the mutant by immunization of guinea pigs through aerosol and subcutaneous routes. We observed that immunization of guinea pigs with MtbδlpqS offered superior protection in lungs as compared to BCG. In addition, MtbδlpqS also prevented the haematogenous spread of the disease which was evident from the significantly reduced splenic bacillary load compared to saline vaccinated animals. The gross pathological observations and the histopathological observations well corroborated the bacterial findings. We also observed that aerogenic route of immunization imparts superior protection compared to subcutaneous route of immunization. These findings well establishes the efficacy of M. tuberculosis mutant in imparting protection against pulmonary TB. © 2016 Elsevier Ltd.

Loading National JALMA Institute For Leprosy and Other Mycabacterial Diseases collaborators
Loading National JALMA Institute For Leprosy and Other Mycabacterial Diseases collaborators