Time filter

Source Type

Krause M.,Federal University of Rio Grande do Sul | Bock P.M.,Federal University of Rio Grande do Sul | Takahashi H.K.,Federal University of Rio Grande do Sul | De Bittencourt P.I.H.,Federal University of Rio Grande do Sul | And 2 more authors.
Clinical Science | Year: 2015

The 70 kDa heat-shock protein (HSP70) family is important for a dynamic range of cellular processes that include protection against cell stress, modulation of cell signalling, gene expression, protein synthesis, protein folding and inflammation. Within this family, the inducible 72 kDa and the cognate 73 kDa forms are found at the highest level. HSP70 has dual functions depending on location. For example, intracellular HSP70 (iHSP70) is anti-inflammatory whereas extracellular HSP70 (eHSP70) has a pro-inflammatory function, resulting in local and systemic inflammation. We have recently identified a divergence in the levels of eHSP70 and iHSP70 in subjects with diabetes compared with healthy subjects and also reported that eHSP70 was correlated with insulin resistance and pancreatic β-cell dysfunction/death. In the present review, we describe possible mechanisms by which HSP70 participates in cell function/dysfunction, including the activation of NADPH oxidase isoforms leading to oxidative stress, focusing on the possible role of HSPs and signalling in pancreatic islet a- and β-cell physiological function in health and Type 2 diabetes mellitus. © The Authors Journal compilation © 2015 Biochemical Society. Source

Krause M.,Federal University of Rio Grande do Sul | Heck T.G.,Federal University of Rio Grande do Sul | Heck T.G.,National Institute of Science and Technology in Hormones and Womens Health INCT HSM | Heck T.G.,Regional University of Northwestern Rio Grande do Sul State | And 8 more authors.
Mediators of Inflammation | Year: 2015

Recent evidence shows divergence between the concentrations of extracellular 70 kDa heat shock protein [eHSP70] and its intracellular concentrations [iHSP70] in people with type 2 diabetes (T2DM). A vital aspect regarding HSP70 physiology is its versatility to induce antagonistic actions, depending on the location of the protein. For example, iHSP70 exerts a powerful anti-inflammatory effect, while eHSP70 activates proinflammatory pathways. Increased eHSP70 is associated with inflammatory and oxidative stress conditions, whereas decreased iHSP70 levels are related to insulin resistance in skeletal muscle. Serum eHSP70 concentrations are positively correlated with markers of inflammation, such as C-reactive protein, monocyte count, and TNF-α, while strategies to enhance iHSP70 (e.g., heat treatment, chemical HSP70 inducers or coinducers, and physical exercise) are capable of reducing the inflammatory profile and the insulin resistance state. Here, we present recent findings suggesting that imbalances in the HSP70 status, described by the [eHSP70]/[iHSP70] ratio, may be determinant to trigger a chronic proinflammatory state that leads to insulin resistance and T2DM development. This led us to hypothesize that changes in this ratio value could be used as a biomarker for the management of the inflammatory response in insulin resistance and diabetes. © 2015 Mauricio Krause et al. Source

Heck T.G.,Federal University of Rio Grande do Sul | Heck T.G.,National Institute of Science and Technology in Hormones and Womens Health INCT HSM | Scholer C.M.,Federal University of Rio Grande do Sul | Scholer C.M.,National Institute of Science and Technology in Hormones and Womens Health INCT HSM | And 2 more authors.
Cell Biochemistry and Function | Year: 2011

Integrative physiology studies have shown that immune system and central nervous system interplay very closely towards behavioural modulation. Since the 70-kDa heat shock proteins (HSP70s), whose heavy expression during exercise is well documented in the skeletal muscle and other tissues, is also extremely well conserved in nature during all evolutionary periods of species, it is conceivable that HSP70s might participate of physiologic responses such as fatigue induced by some types of physical exercise. In this way, increased circulating levels of extracellular HSP70 (eHSP70) could be envisaged as an immunomodulatory mechanism induced by exercise, besides other chemical messengers (e.g. cytokines) released during an exercise effort, that are able to binding a number of receptors in neural cells. Studies from this laboratory led us to believe that increased levels of eHSP70 in the plasma during exercise and the huge release of eHSP70 from lymphocytes during high-load exercise bouts may participate in the fatigue sensation, also acting as a danger signal from the immune system. © 2011 John Wiley & Sons, Ltd. Source

Discover hidden collaborations