National Institute Of Psychiatry Ramon Of La Fuente Muniz Inprfm

Mexico City, Mexico

National Institute Of Psychiatry Ramon Of La Fuente Muniz Inprfm

Mexico City, Mexico
SEARCH FILTERS
Time filter
Source Type

Martinez-Levy G.A.,National Institute Of Psychiatry Ramon Of La Fuente Muniz Inprfm | Rocha L.,CINVESTAV | Lubin F.D.,University at Birmingham | Alonso-Vanegas M.A.,National Institute of Neurology and Neurosurgery Manuel Velasco Suarez INNNMVS | And 9 more authors.
Neuroscience | Year: 2016

A putative role of the brain-derived neurotrophic factor (BDNF) in epilepsy has emerged from in vitro and animal models, but few studies have analyzed human samples. We assessed the BDNF expression of transcripts with exons I (BDNFI), II (BDNFII), IV (BDNFIV) and VI (BDNFVI) and methylation levels of promoters 4 and 6 in the hippocampi of patients with pharmaco-resistant temporal lobe epilepsy (TLE) (n= 24). Hippocampal sclerosis (HS) and pre-surgical pharmacological treatment were considered as clinical independent variables. A statistical significant increase for the BDNFVI (p< 0.05) was observed in TLE patients compared to the autopsy control group (n= 8). BDNFVI was also increased in anxiety/depression TLE (N= 4) when compared to autopsies or to the remaining group of patients (p< 0.05). In contrast, the use of the antiepileptic drug Topiramate (TPM) (N= 3) was associated to a decrease in BDNFVI expression (p< 0.05) when compared to the remaining group of patients. Methylation levels at the BDNF promoters 4 and 6 were similar between TLE and autopsies and in relation to the use of either Sertraline (SRT) or TPM. These results suggest an up-regulated expression of a specific BDNF transcript in patients with TLE, an effect that seems to be dependent on the use of specific drugs. © 2015.


Martinez-Levy G.A.,National Institute Of Psychiatry Ramon Of La Fuente Muniz Inprfm | Rocha L.,Mexican Center for Research and Advanced Studies | Rodriguez-Pineda F.,National Institute Of Psychiatry Ramon Of La Fuente Muniz Inprfm | Alonso-Vanegas M.A.,National Institute of Neurology and Neurosurgery Manuel Velasco Suarez INNNMVS | And 6 more authors.
Molecular Neurobiology | Year: 2017

A body of evidence supports a relevant role of brain-derived neurotrophic factor (BDNF) in temporal lobe epilepsy (TLE). Magnetic resonance data reveal that the cerebral atrophy extends to regions that are functionally and anatomically connected with the hippocampus, especially the temporal cortex. We previously reported an increased expression of BDNF messenger for the exon VI in the hippocampus of temporal lobe epilepsy patients compared to an autopsy control group. Altered levels of this particular transcript were also associated with pre-surgical use of certain psychotropic. We extended here our analysis of transcripts I, II, IV, and VI to the temporal cortex since this cerebral region holds intrinsic communication with the hippocampus and is structurally affected in patients with TLE. We also assayed the cyclic adenosine monophosphate response element-binding (CREB) and glucocorticoid receptor (GR) genes as there is experimental evidence of changes in their expression associated with BDNF and epilepsy. TLE and pre-surgical pharmacological treatment were considered as the primary clinical independent variables. Transcripts BDNF I and BDNF VI increased in the temporal cortex of patients with pharmacoresistant TLE. The expression of CREB and GR expression follow the same direction. Pre-surgical use of selective serotonin reuptake inhibitors, carbamazepine (CBZ) and valproate (VPA), was associated with the differential expression of specific BDNF transcripts and CREB and GR genes. These changes could have functional implication in the plasticity mechanisms related to temporal lobe epilepsy. © 2017 Springer Science+Business Media New York


Alvarez-Salas E.,National Institute Of Psychiatry Ramon Of La Fuente Muniz Inprfm | Mengod G.,Institute dInvestigacions | Garcia-Luna C.,National Institute Of Psychiatry Ramon Of La Fuente Muniz Inprfm | Soberanes-Chavez P.,National Institute Of Psychiatry Ramon Of La Fuente Muniz Inprfm | And 2 more authors.
Neuropeptides | Year: 2015

Thyrotropin-releasing hormone (TRH) is a neuropeptide with endocrine and neuromodulatory effects. TRH from the paraventricular hypothalamic nucleus (PVN) participates in the control of energy homeostasis; as a neuromodulator TRH has anorexigenic effects. Negative energy balance decreases PVN TRH expression and TSH concentration; in contrast, a particular model of anorexia (dehydration) induces in rats a paradoxical increase in TRH expression in hypophysiotropic cells from caudal PVN and high TSH serum levels, despite their apparent hypothalamic hyperthyroidism and low body weight. We compared here the mRNA co-expression pattern of one of the brain thyroid hormones' transporters, the monocarboxylate transporter-8 (MCT8) with that of TRH in PVN subdivisions of dehydration-induced anorexic (DIA) and control rats. Our aim was to identify whether a low MCT8 expression in anorexic rats could contribute to their high TRH mRNA content. We registered daily food intake and body weight of 7-day DIA and control rats and analyzed TRH and MCT8 mRNA co-expression throughout the PVN by double in situ hybridization assays. We found that DIA rats showed increased number of TRHergic cells in caudal PVN, as well as a decreased percentage of TRH-expressing neurons that co-expressed MCT8 mRNA signal. Results suggest that the reduced proportion of double TRH/MCT8 expressing cells may be limiting the entry of hypothalamic triiodothyronine to the greater number of TRH-expressing neurons from caudal PVN and be in part responsible for the high TRH expression in anorexia rats and for the lack of adaptation of their hypothalamic-pituitary-thyroid axis to their low food intake. © 2015.


PubMed | CINVESTAV, National Institute of Neurology and Neurosurgery Manuel Velasco Suarez INNNMVS, National Autonomous University of Mexico, National Institute Of Psychiatry Ramon Of La Fuente Muniz Inprfm and University of Alabama at Birmingham
Type: | Journal: Neuroscience | Year: 2016

A putative role of the brain-derived neurotrophic factor (BDNF) in epilepsy has emerged from in vitro and animal models, but few studies have analyzed human samples. We assessed the BDNF expression of transcripts with exons I (BDNFI), II (BDNFII), IV (BDNFIV) and VI (BDNFVI) and methylation levels of promoters 4 and 6 in the hippocampi of patients with pharmaco-resistant temporal lobe epilepsy (TLE) (n=24). Hippocampal sclerosis (HS) and pre-surgical pharmacological treatment were considered as clinical independent variables. A statistical significant increase for the BDNFVI (p<0.05) was observed in TLE patients compared to the autopsy control group (n=8). BDNFVI was also increased in anxiety/depression TLE (N=4) when compared to autopsies or to the remaining group of patients (p<0.05). In contrast, the use of the antiepileptic drug Topiramate (TPM) (N=3) was associated to a decrease in BDNFVI expression (p<0.05) when compared to the remaining group of patients. Methylation levels at the BDNF promoters 4 and 6 were similar between TLE and autopsies and in relation to the use of either Sertraline (SRT) or TPM. These results suggest an up-regulated expression of a specific BDNF transcript in patients with TLE, an effect that seems to be dependent on the use of specific drugs.


PubMed | National Institute Of Psychiatry Ramon Of La Fuente Muniz Inprfm and Institute dInvestigacions
Type: | Journal: Neuropeptides | Year: 2016

Thyrotropin-releasing hormone (TRH) is a neuropeptide with endocrine and neuromodulatory effects. TRH from the paraventricular hypothalamic nucleus (PVN) participates in the control of energy homeostasis; as a neuromodulator TRH has anorexigenic effects. Negative energy balance decreases PVN TRH expression and TSH concentration; in contrast, a particular model of anorexia (dehydration) induces in rats a paradoxical increase in TRH expression in hypophysiotropic cells from caudal PVN and high TSH serum levels, despite their apparent hypothalamic hyperthyroidism and low body weight. We compared here the mRNA co-expression pattern of one of the brain thyroid hormones transporters, the monocarboxylate transporter-8 (MCT8) with that of TRH in PVN subdivisions of dehydration-induced anorexic (DIA) and control rats. Our aim was to identify whether a low MCT8 expression in anorexic rats could contribute to their high TRH mRNA content.We registered daily food intake and body weight of 7-day DIA and control rats and analyzed TRH and MCT8 mRNA co-expression throughout the PVN by double in situ hybridization assays. We found that DIA rats showed increased number of TRHergic cells in caudal PVN, as well as a decreased percentage of TRH-expressing neurons that co-expressed MCT8 mRNA signal. Results suggest that the reduced proportion of double TRH/MCT8 expressing cells may be limiting the entry of hypothalamic triiodothyronine to the greater number of TRH-expressing neurons from caudal PVN and be in part responsible for the high TRH expression in anorexia rats and for the lack of adaptation of their hypothalamic-pituitary-thyroid axis to their low food intake.

Loading National Institute Of Psychiatry Ramon Of La Fuente Muniz Inprfm collaborators
Loading National Institute Of Psychiatry Ramon Of La Fuente Muniz Inprfm collaborators