National Institute of Nuclear Physics, Italy

www.infn.it/index.php?lang=en
Milan, Italy

The INFN Grid project was an initiative of the Istituto Nazionale di Fisica Nucleare —Italy's National Institute for Nuclear Physics—for grid computing. Its goal was to develop and deploy grid middleware services to allow INFN's various user communities to transparently and securely share the computing and storage resources together with applications and technical facilities for scientific collaborations.With the beginning of the European Grid Infrastructure project in 2010, the activities of INFN Grid were consolidated into the Italian Grid Infrastructure which operates as a European joint research unit formally supported by the Italian Ministry for University and Research and the European Commission. Wikipedia.

SEARCH FILTERS
Time filter
Source Type

Patent
National Institute of Nuclear Physics, Italy and University of Rome La Sapienza | Date: 2015-05-14

An echo-scintigraphic probe for medical applications and the method of merging images. It is constituted by the union of an ultrasound probe suitably integrated, both in geometric terms, and in terms of image processing, with a scintigraphic probe or gamma camera (3). With a single application of said probe, one is able to provide a double image of the object under examination. The ultrasound probe is housed in the head, above the plane of the collimator and kept projecting to favor the direct contact with the body part of the patient to be examined. The collimator is able to obtain images of the biodistribution of a radiolabelled drug by radiation with frontal incidence, maintaining the characteristics of the ultrasound probe. The probe is applicable to both clinical diagnosis and intraoperative diagnosis of cancer with the use of radio tracers. A guided diagnostic method is disclosed that realizes a functional integration of a pair of ultrasound and scintigraphic images concurrently obtained by the echo-scintigraphic probe.


Patent
National Institute of Nuclear Physics, Italy | Date: 2014-12-19

The invention relates to a method for producing a heat exchanger, wherein at least one microchannel, placed within a plate having an upper face and a lower face and precisely arranged between said upper face and lower face is obtained by making a groove on the upper face of the plate, said groove extending between an open extremity facing on the upper face and a blind extremity placed inside the plate, and machining the blind extremity of the groove to create a volume of a suitable size to house a tube inserted in the microchannel, said tube being fixed inside the microchannel by generating an interference between the tube and the microchannel. The invention relates also to a heat exchanger obtained by such method.


Patent
The Regents Of The University Of California and National Institute of Nuclear Physics, Italy | Date: 2016-06-30

Position sensitive radiation detection is provided using a continuous electrode in a semiconductor radiation detector, as opposed to the conventional use of a segmented electrode. Time constants relating to AC coupling between the continuous electrode and segmented contacts to the electrode are selected to provide position resolution from the resulting configurations. The resulting detectors advantageously have a more uniform electric field than conventional detectors having segmented electrodes, and are expected to have much lower cost of production and of integration with readout electronics.


Patent
National Institute of Nuclear Physics, Italy and University of Rome La Sapienza | Date: 2017-03-22

The present invention relates to an echo-scintigraphic probe (1) for medical applications and the method of merging images. It is constituted by the union of an ultrasound probe (11) suitably integrated, both in geometric terms, and in terms of image processing, with a scintigraphic probe or gamma camera (3). With a single application of said probe (1), one is able to provide a double image of the object under examination. The ultrasound probe (11) is housed in the head (8), above the plane of the collimator (14) and kept projecting to favor the direct contact with the body part (20) of the patient (13) to be examined. The collimator (14) is able to obtain images of the biodistribution of a radiolabeled drug by radiation with frontal incidence, maintaining the characteristics of the ultrasound probe (11). The probe (1) is applicable to both clinical diagnosis and intraoperative diagnosis of cancer with the use of radio tracers. The invention also concerns a guided diagnostic method that realizes a functional integration of a pair of ultrasound and scintigraphic images concurrently obtained by the echo-scintigraphic probe (1) according to the invention.


Patent
National Institute of Nuclear Physics, Italy | Date: 2017-03-08

The invention relates to a method for producing a heat exchanger (1), wherein at least one microchannel (3), placed within a plate (2) having an upper face (4) and a lower face (6) and precisely arranged between said upper face (4) and lower face (5) is obtained by making a groove on the upper face (4) of the plate (2), said groove extending between an open extremity facing on the upper face (4) and a blind extremity (32) placed inside the plate (2), and machining the blind extremity (32) of the groove to create a volume of a suitable size to house a tube (10) inserted in the microchannel (3), said tube (10) being fixed inside the microchannel (3) by generating an interference between the tube (10) and the microchannel (3). The invention relates also to a heat exchanger (1) obtained by such method. The heat exchanger (1) according to the present invention is advantageously and preferably applied in nuclear and particle physics systems, such as for example systems for producing radiopharmaceuticals (100), for cooling heat engines, for cooling electronic components and circuits, for producing power targets for medical, energy and basic research applications.


A system for measuring a mono-energetic hadron beam, characterized by including a first detection unit (10) comprising a planar sensor (12) having a sensing area (14) segmented into a matrix of pixels (16), each pixel being adapted to provide a transit signal indicative of transit of a particle therethrough, and a counting circuit (18) coupled to the sensor for providing an output signal indicative of number of particles Np of the beam crossing said sensing area in a time interval, based on the transit signals provided by said pixels, and a second detection unit (30) arranged downstream of the first detection unit (10) and comprising at least one ionization detector (31) for providing an output signal proportional to the total charge Qion released by the beam (B) in the ionization detector in said time interval.


Patent
National Institute of Nuclear Physics, Italy | Date: 2014-12-18

The present invention relates to a method for producing beta emitting radiopharmaceuticals. The method provides to produce, through a primary accelerator, a low energy proton beam, namely with an energy lower than 70 MeV, preferably with an energy ranging from 32 to 45 MeV, more preferably with energy ranging from 38 to 42 MeV; the low energy proton beam is irradiated on a source target so as to generate a neutral atom beam; the neutral atoms are ionized, extracted by acceleration and preferably subjected to a first focusing; the first focused beam is subjected to a mass separation such to generate a isobaric beam of radioisotopes. The isobaric beam therefore is preferably subjected to a second focusing and it is sent for a predetermined time on a deposition target. Then the irradiated deposition target is subjected to chemical treatment so as to obtain pure beta emitting radiopharmaceuticals.


Systems and methods for measuring mono-energetic hadron beams are provided. Such systems and methods include a first detection unit having a planar sensor with a sensing area segmented into a matrix of pixels, each pixel being adapted to provide a transit signal indicative of transit of a particle therethrough, and a counting circuit coupled to the sensor for providing an output signal indicative of number of particles N_(p )of the beam crossing said sensing area in a time interval, based on the transit signals provided by said pixels, and a second detection unit arranged downstream of the first detection unit which includes at least one ionization detector for providing an output signal proportional to the total charge Q_(ion )released by the beam (B) in the ionization detector in such time interval.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: INFRADEV-04-2016 | Award Amount: 9.95M | Year: 2017

The EOSCpilot project will support the first phase in the development of the European Open Science Cloud (EOSC) as described in the EC Communication on European Cloud Initiatives [2016]. It will establish the governance framework for the EOSC and contribute to the development of European open science policy and best practice; It will develop a number of pilots that integrate services and infrastructures to demonstrate interoperability in a number of scientific domains; and It will engage with a broad range of stakeholders, crossing borders and communities, to build the trust and skills required for adoption of an open approach to scientific research . These actions will build on and leverage already available resources and capabilities from research infrastructure and e-infrastructure organisations to maximise their use across the research community. The EOSCpilot project will address some of the key reasons why European research is not yet fully tapping into the potential of data. In particular, it will: reduce fragmentation between data infrastructures by working across scientific and economic domains, countries and governance models, and improve interoperability between data infrastructures by demonstrating how data and resources can be shared even when they are large and complex and in varied formats, In this way, the EOSC pilot project will improve the ability to reuse data resources and provide an important step towards building a dependable open-data research environment where data from publicly funded research is always open and there are clear incentives and rewards for the sharing of data and resources.


Giunti C.,National Institute of Nuclear Physics, Italy | Studenikin A.,Moscow State University
Reviews of Modern Physics | Year: 2015

A review is given of the theory and phenomenology of neutrino electromagnetic interactions, which provide powerful tools to probe the physics beyond the standard model. After a derivation of the general structure of the electromagnetic interactions of Dirac and Majorana neutrinos in the one-photon approximation, the effects of neutrino electromagnetic interactions in terrestrial experiments and in astrophysical environments are discussed. The experimental bounds on neutrino electromagnetic properties are presented and the predictions of theories beyond the standard model are confronted. © 2015 American Physical Society.

Loading National Institute of Nuclear Physics, Italy collaborators
Loading National Institute of Nuclear Physics, Italy collaborators