Entity

Time filter

Source Type


Lee N.,Inha University | Lee H.,National Institute of Meteorological Science | Baek C.,Inha University | Lee S.,Inha University
Journal of Wind Engineering and Industrial Aerodynamics | Year: 2016

An effective time-domain aeroelastic framework for bridge deck flutters is presented based on a modified implicit coupling algorithm with grid deformation techniques. The grid deformation is accomplished by radial basis function interpolation as well as by the rigid movement of the initial grid. In this paper, for computational efficiency, a coupling frequency control technique is adopted for the implicit coupling algorithm. To verify the time-domain aeroelastic framework by using the grid deformation technique, the vortex-induced vibration of the cylinder and H-section bridge deck flutter are computed, and the results are compared with published results. The effect of the coupling frequency with the grid deformation technique is presented for the flutter analysis of the Great Belt East Bridge suspension girder section. © 2016 Elsevier Ltd.


Kim J.-A.,National Institute of Meteorological Science | Byun H.-R.,Pukyong National University
Meteorology and Atmospheric Physics | Year: 2016

The spatiotemporal distributions of latest frost dates (LFDs) on the Korean Peninsula and the atmospheric circulation patterns that resulted in the latest frosts (LFs) were investigated through the use of historical records and modern weather observation data. During the modern observation period since 1904, the most recent record of LF was April 28, 2013 at Daegwallyeong. On average, the LF occurred in Korea between March 17 (at Wando) and May 10 (at Daegwallyeong). Positive correlations were found between LFD and altitude and latitude. Additionally, inter- annual variation of LFD showed a trend of progressively earlier dates at 32 of the 48 stations at which data were available. The historic data set consists of the following: 39 records of frosts during the Three-States Period (57 BC–998 AD): 34 records during the Goryeo Dynasty (998–1391), among which the latest record was in July of the lunar calendar: and 498 during the Joseon Dynasty (1392–1928) with one LF dated August 31, 1417 on the solar calendar. Regarding LFD from The Annals of the Joseon Dynasty, April has 11 records, May has 55, June has 46, July has 21, and August has 5 LFD records. Various meteorological causes of the latest LF were then established. Firstly, a cold and humid north-easterly current that originates from high latitudes of more than 50°N and passes through the East Sea is considered one of the dominant causes of LF. Secondly, strong radiative cooling under clear skies is suspected as another important cause. Thirdly, a specific pressure pattern, called the ‘inverted-S contour’ or ‘North High and South Low (NHSL) pattern’ was found to be a favorable condition for LF. Finally the latest LF was not found to be related to monthly or longer-term cold climate, but are instead linked to the abrupt development of a strong ridge over inland Asia and the unusual southward movement of the tall polar cyclone over the North Pacific Ocean. © 2016 Springer-Verlag Wien


Lee C.B.,Kangwon National University | Kim J.-C.,Kangwon National University | Belorid M.,National Institute of Meteorological Science | Zhao P.,University of Bayreuth
Asian Journal of Atmospheric Environment | Year: 2016

This study presents a performance evaluation of four different land surface models (LSM) available in Weather Forecast Research (WRF). The research site was located in Haean Basin in South Korea. The basin is very unique by its geomorphology and topography. For a better representation of the complex terrain in the mesoscale model were used a high resolution topography data with a spatial resolution of 30 meters. Additionally, land-use layer was corrected by ground mapping data-sets. The observation equipments used in the study were an ultrasonic anemometer with a gas analyzer, an automatic weather station and a tethered balloon sonde. The model simulation covers a four-day period during autumn. The result shows significant impact of LSM on meteorological simulation. The best agreement between observation and simulation was found in the case of WRF with Noah LSM (WRF-Noah). The WRF with Rapid Update Cycle LSM (WRF-RUC) has a very good agreement with temperature profiles due to successfully predicted fog which appeared during measurements and affected the radiation budget at the basin floor. The WRF with Pleim and Xiu LSM (WRF-PX) and WRF with Thermal Diffusion LSM (WRF-TD) performed insufficiently for simulation of heat fluxes. Both overestimated the sensible and underestimated the latent heat fluxes during the daytime.


Choi J.-W.,National Institute of Meteorological Science | Cha Y.,National Typhoon Center
Dynamics of Atmospheres and Oceans | Year: 2016

This study has developed the index for diagnosis on possibility that tropical cyclones (TCs) affect Korean Peninsula. This index is closely related to the strength of the western North Pacific subtropical high (WNPSH), which is calculated as a difference in meridional wind between at the highest correlation area (around Korean Peninsula) and at the lowest correlation area (sea southeast of Japan) through a correlation analysis between TC frequency that affects Korean Peninsula and 500 hPa meridional wind. In low frequency years that selected from Korea affecting TC index, anomalous northeasterly is strengthened from Korea to the South China Sea because the center of anomalous anticyclonic circulation is located to northwest of Korean Peninsula. Thus, TCs tend to move westward from the sea east of the Philippines to the mainland China. On the other hand, in high frequency years, anomalous southwesterly serves as steering flow that more TCs move toward Korean Peninsula because the center of anomalous anticyclonic circulation is located to sea east of Japan. Consequently, this study suggests that if this index is calculated using real time 500 hPa meridional winds that forecasted by dynamic models during the movement of TCs, the possibility that TCs approach Korean Peninsula can be diagnosed in real time. © 2016 Elsevier B.V.


Kim Y.,University of Michigan | Jun M.,Texas A&M University | Min S.-K.,Pohang University of Science and Technology | Suh M.-S.,Kongju National University | Kang H.-S.,National Institute of Meteorological Science
Asia-Pacific Journal of Atmospheric Sciences | Year: 2016

CORDEX-East Asia, a branch of the coordinated regional climate downscaling experiment (CORDEX) initiative, provides high-resolution climate simulations for the domain covering East Asia. This study analyzes temperature data from regional climate models (RCMs) participating in the CORDEX - East Asia region, accounting for the spatial dependence structure of the data. In particular, we assess similarities and dissimilarities of the outputs from two RCMs, HadGEM3-RA and RegCM4, over the region and over time. A Bayesian functional analysis of variance (ANOVA) approach is used to simultaneously model the temperature patterns from the two RCMs for the current and future climate. We exploit nonstationary spatial models to handle the spatial dependence structure of the temperature variable, which depends heavily on latitude and altitude. For a seasonal comparison, we examine changes in the winter temperature in addition to the summer temperature data. We find that the temperature increase projected by RegCM4 tends to be smaller than the projection of HadGEM3-RA for summers, and that the future warming projected by HadGEM3-RA tends to be weaker for winters. Also, the results show that there will be a warming of 1-3°C over the region in 45 years. More specifically, the warming pattern clearly depends on the latitude, with greater temperature increases in higher latitude areas, which implies that warming may be more severe in the northern part of the domain. © 2016, Korean Meteorological Society and Springer Science+Business Media Dordrecht.

Discover hidden collaborations