Time filter

Source Type

Bassino E.,University of Turin | Fornero S.,University of Turin | Gallo M.P.,University of Turin | Ramella R.,University of Turin | And 6 more authors.
Cardiovascular Research | Year: 2011

Aims Catestatin (CST) is a chromogranin A (CgA)-derived peptide (hCgA352372) with three identified human variants (G364S/P370L/R374Q-CST) that show differential potencies towards the inhibition of catecholamine release. Although CST affects several cardiovascular parameters, the mechanisms underlying CST action in the heart have remained elusive. Therefore, we sought to determine the mechanism of action of CST and its variants on ventricular myocardium and endothelial cells. Methods and resultsContractile force and Ca 2 transients were measured, respectively, on rat papillary muscles and isolated cardiomyocytes (CC) under basal conditions and after β-adrenergic stimulation. Nitric oxide (NO) production and endothelial nitric oxide synthase (eNOS) phosphorylation (P Ser1179eNOS) were studied in bovine aortic endothelial (BAE-1) cells. Under basal conditions, wild-type CST (WT-CST, 1050 nM) transiently enhanced myocardial contractility. CST variants (G364S and P370L) exerted a comparable positive inotropic effect. The H1 histamine receptor antagonist mepyramine abolished the increase of contractile force induced by WT-CST. Moreover, WT-CST dose-dependently (550 nM) reduced the effect of β-adrenergic stimulation. This anti-adrenergic effect was not mediated by a direct action on CC, but involved a PI3K-dependent NO release from endocardial endothelial cells. Indeed, CST induced a wortmannin-sensitive, Ca 2-independent increase in NO production and eNOS phosphorylation on BAE-1 cells. While the anti-adrenergic and NO release effects of P370L-CST were comparable with those of WT-CST, the G364S variant was ineffective on the same parameters. ConclusionOur results suggest that the anti-adrenergic action of CST depends on the endothelial PI3KAkteNOS pathway and that its structural alterations entail functional features that correlate with the different anti-hypertensive potential described in humans. © 2011 The Author.


Penna C.,University of Turin | Penna C.,National Institute of Cardiovascular Research INRC | Perrelli M.-G.,University of Turin | Perrelli M.-G.,National Institute of Cardiovascular Research INRC | And 8 more authors.
Pflugers Archiv European Journal of Physiology | Year: 2011

Postconditioning (PostC) modifies the early post-ischemic pH, redox environment, and activity of enzymes. We hypothesized that early acidosis in PostC may affect superoxide dismutase (SOD) and catalase (CAT) activities, may reduce 3-nitrotyrosine (3-NT) protein levels, and may increase S-nitrosylated (SNO) protein levels, thus deploying its protective effects. To verify this hypothesis, we studied the early (7 th min) and late (120 th min) phases of reperfusion (a) endogenous SOD and CAT activities and (b) 3-NT protein levels and SNO protein levels. Isolated rat hearts underwent 30-min ischemia/120-min reperfusion (I/R) or PostC (5 cycles of 10-s I/R at the beginning of 120-min reperfusion) either with or without exogenous CAT or SOD infused during the initial 3 min of reperfusion. The effects of early reperfusion with acid buffer (AB, pH 6.8) on endogenous antioxidant enzymes were also tested. Pressure, infarct size, and lactate dehydrogenase release were also measured. At the 7 th min, PostC induced a significant decrease in SOD activity with no major change both in Mn and Cu/Zn SOD levels and in CAT activity and level. PostC also reduced 3-NT and increased SNO levels. Exogenous SOD, but not CAT, abolished PostC cardioprotection. In late reperfusion (120-min), I/R increased SOD activity but decreased CAT activity and Cu/Zn SOD levels; these effects were reversed by PostC; 3-NT was not affected, but SNO was increased by PostC. AB reproduced PostC effects on antioxidant enzymes. The conclusions are as follows: PostC downregulates endogenous SOD and preserves CAT activity, thus increasing SNO and reducing 3-NT levels. These effects are triggered by early post-ischemic acidosis. Yet acidosis-induced SOD downregulation may limit denitrosylation, thus contributing to PostC triggering. Hence, exogenous SOD, but not CAT, interferes with PostC triggering. Prolonged SOD downregulation and SNO increase may contribute to PostC and AB beneficial effects. © 2011 Springer-Verlag.


Sprio A.E.,University of Turin | Di Scipio F.,University of Turin | Raimondo S.,University of Turin | Salamone P.,University of Turin | And 11 more authors.
Stem Cells and Development | Year: 2012

The stemness state is characterized by self-renewal and differentiation properties. However, stem cells are not able to preserve these characteristics in long-term culture because of the intrinsic fragility of their phenotype easily undergoing senescence or neoplastic transformation. Furthermore, although isolated from the same original tissue using similar protocols, adult stem cells can display dissimilar phenotypes and important cell clone/species contamination. Finally, the lack of a clear standardization contributes to complicate the comprehension about the stemness condition. In this context, cell lines displaying a particularly stable phenotype must be identified to define one or multiple benchmarks against which other stem cell lines could be reliably assessed. The present paper demonstrates that it is possible to isolate from the rat dental pulp a stem cell line (MUR-1) that does not display neoplastic transformation in long-term culture. MUR-1 cells stably express a broad range of stemness markers and are able to differentiate into adipogenic, osteogenic, chondrogenic, neurogenic, and cardiomyogenic lineages independently of the culture passages. Moreover, serial in vitro passages have not changed their immunophenotype, proliferation capacity, or differentiation potential. The uniqueness of these characteristics candidates MUR-1 as a model to reliably improve the understanding of the mechanisms governing the stem cell fate in the same as well as in other stem cell populations. © 2012, Mary Ann Liebert, Inc.


Penna C.,University of Turin | Penna C.,National Institute of Cardiovascular Research INRC | Perrelli M.-G.,University of Turin | Perrelli M.-G.,National Institute of Cardiovascular Research INRC | And 2 more authors.
Antioxidants and Redox Signaling | Year: 2013

Reperfusion therapy is the indispensable treatment of acute myocardial infarction (AMI) and must be applied as soon as possible to attenuate the ischemic insult. However, reperfusion is responsible for additional myocardial damage likely involving opening of the mitochondrial permeability transition pore (mPTP). A great part of reperfusion injury occurs during the first minute of reperfusion. The prolonged opening of mPTP is considered one of the endpoints of the cascade to myocardial damage, causing loss of cardiomyocyte function and viability. Opening of mPTP and the consequent oxidative stress due to reactive oxygen and nitrogen species (ROS/RNS) are considered among the major mechanisms of mitochondrial and myocardial dysfunction. Kinases and mitochondrial components constitute an intricate network of signaling molecules and mitochondrial proteins, which interact in response to stressors. Cardioprotective pathways are activated by stimuli such as preconditioning and postconditioning (PostC), obtained with brief intermittent ischemia or with pharmacological agents, which drastically reduce the lethal ischemia/reperfusion injury. The protective pathways converging on mitochondria may preserve their function. Protection involves kinases, adenosine triphosphate-dependent potassium channels, ROS signaling, and the mPTP modulation. Some clinical studies using ischemic PostC during angioplasty support its protective effects, and an interesting alternative is pharmacological PostC. In fact, the mPTP desensitizer, cyclosporine A, has been shown to induce appreciable protections in AMI patients. Several factors and comorbidities that might interfere with cardioprotective signaling are considered. Hence, treatments adapted to the characteristics of the patient (i.e., phenotype oriented) might be feasible in the future. © Mary Ann Liebert, Inc.


Di Scipio F.,University of Turin | Sprio A.E.,University of Turin | Folino A.,University of Turin | Carere M.E.,University of Turin | And 9 more authors.
Biochimica et Biophysica Acta - General Subjects | Year: 2014

Background The heart is unable to regenerate its tissues after severe injuries. Stem cell therapy appears to be one of the most promising approaches, though preclinical results are hitherto contradictory and clinical trials scanty and/or limited to phase-I. The limited knowledge about stem cell early homing in infarcted cardiac tissues can concur to this scenario. Methods The stem cell migration was assessed in in-vitro and ex-vivo models of heart ischemia, employing a rat dental pulp stem cell line (MUR-1) that shares the same ontogenic progenitors with portions of the heart, expresses markers typical of cardiac/vascular-like progenitors and is able to differentiate into cardiomyocytes in-vitro. Results Here, we demonstrated that the MUR-1 can reach the injured cells/tissue and make contacts with the damaged cardiomyocytes, likely through Connexin 43, N-cadherin and von Willebrand Factor mediated cell-cell interactions, both in in-vitro and ex-vivo models. Furthermore, we found that SDF-1, FGF-2 and HGF, but not VEGF are involved as chemotactic factors in MUR-1 migration, notifying a similarity with neural crest cell behavior during the organogenesis of both the splanchnocranium and the heart. Conclusions Herein we found a similarity between what happens during the heart organogenesis and the early migration and homing of MUR-1 cells in ischemic models. General significance The comprehension of molecular aspects underlying the early phases of stem cell migration and interaction with damaged organ contributes to the future achievement of the coveted stem cell-mediated organ regeneration and function preservation in-vivo. © 2014 Elsevier B.V.

Loading National Institute of Cardiovascular Research INRC collaborators
Loading National Institute of Cardiovascular Research INRC collaborators