Entity

Time filter

Source Type


Sens K.L.,Johns Hopkins University | Zhang S.,Johns Hopkins University | Jin P.,Johns Hopkins University | Duan R.,Johns Hopkins University | And 4 more authors.
Journal of Cell Biology | Year: 2010

Recent studies in Drosophila have implicated actin cytoskeletal remodeling in myoblast fusion, but the cellular mechanisms underlying this process remain poorly understood. Here we show that actin polymerization occurs in an asymmetric and cell type-specific manner between a muscle founder cell and a fusion-competent myoblast (FCM). In the FCM, a dense F-actin-enriched focus forms at the site of fusion, whereas a thin sheath of F-actin is induced along the apposing founder cell membrane. The FCM-specific actin focus invades the apposing founder cell with multiple finger-like protrusions, leading to the formation of a single-channel macro fusion pore between the two muscle cells. Two actin nucleation-promoting factors of the Arp2/3 complex, WASP and Scar, are required for the formation of the F-actin foci, whereas WASP but not Scar promotes efficient foci invasion. Our studies uncover a novel invasive podosome-like structure (PLS) in a developing tissue and reveal a previously unrecognized function of PLSs in facilitating cell membrane juxtaposition and fusion. © 2010 Sens et al.


Schuck P.,National Institute of Biomedical Imaging and Bioengineering
Biophysical Journal | Year: 2010

Sedimentation velocity analytical ultracentrifugation combines relatively high hydrodynamic resolution of macromolecular species with the ability to study macromolecular interactions, which has great potential for studying dynamically assembled multiprotein complexes. Complicated sedimentation boundary shapes appear in multicomponent mixtures when the timescale of the chemical reaction is short relative to the timescale of sedimentation. Although the Lamm partial differential equation rigorously predicts the evolution of concentration profiles for given reaction schemes and parameter sets, this approach is often not directly applicable to data analysis due to experimental and sample imperfections, and/or due to unknown reaction pathways. Recently, we have introduced the effective particle theory, which explains quantitatively and in a simple physical picture the sedimentation boundary patterns arising in the sedimentation of rapidly interacting systems. However, it does not address the diffusional spread of the reaction boundary from the cosedimentation of interacting macromolecules, which also has been of long-standing interest in the theory of sedimentation velocity analytical ultracentrifugation. Here, effective particle theory is exploited to approximate the concentration gradients during the sedimentation process, and to predict the overall, gradient-average diffusion coefficient of the reaction boundary. The analysis of the heterogeneity of the sedimentation and diffusion coefficients across the reaction boundary shows that both are relatively uniform. These results support the application of diffusion-deconvoluting sedimentation coefficient distributions c(s) to the analysis of rapidly interacting systems, and provide a framework for the quantitative interpretation of the diffusional broadening and the apparent molar mass values of the effective sedimenting particle in dynamically associating systems. © 2010 by the Biophysical Society.


Chandran P.L.,Section on Tissue Biophysics and Biomimetics | Chandran P.L.,National Institute of Biomedical Imaging and Bioengineering | Horkay F.,Section on Tissue Biophysics and Biomimetics
Acta Biomaterialia | Year: 2012

Aggrecan is a high-molecular-weight, bottlebrush-shaped, negatively charged biopolymer that forms supermolecular complexes with hyaluronic acid. In the extracellular matrix of cartilage, aggrecan-hyaluronic acid complexes are interspersed in a collagen meshwork and provide the osmotic properties required to resist deswelling under compressive load. In this review we compile aggrecan solution behavior from different experimental techniques, and discuss them in the context of concentration regimes that were identified in osmotic pressure experiments. At low concentrations, aggrecan exhibits microgel-like behavior. With increasing concentration, the bottlebrushes self-assemble into large complexes. In the physiological concentration range (2 < c aggrecan < 8% w/w), the physical properties of the solution are dominated by repulsive electrostatic interactions between aggrecan complexes. We discuss the consequences of the bottlebrush architecture on the polyelectrolyte characteristics of the aggrecan molecule, and its implications for cartilage properties and function. © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.


Clatworthy M.R.,University of Cambridge | Clatworthy M.R.,National Institute of Allergy and Infectious Diseases | Aronin C.E.P.,National Institute of Allergy and Infectious Diseases | Mathews R.J.,University of Cambridge | And 3 more authors.
Nature Medicine | Year: 2014

Antibodies are critical for defense against a variety of microbes, but they may also be pathogenic in some autoimmune diseases. Many effector functions of antibodies are mediated by Fcγ receptors (FcγRs), which are found on most immune cells, including dendritic cells (DCs) - important antigen-presenting cells that play a central role in inducing antigen-specific tolerance or immunity. Following antigen acquisition in peripheral tissues, DCs migrate to draining lymph nodes via the lymphatics to present antigen to T cells. Here we demonstrate that FcγR engagement by IgG immune complexes (ICs) stimulates DC migration from peripheral tissues to the paracortex of draining lymph nodes. In vitro, IC-stimulated mouse and human DCs showed greater directional migration in a chemokine (C-C) ligand 19 (CCL19) gradient and increased chemokine (C-C) receptor 7 (CCR7) expression. Using intravital two-photon microscopy, we observed that local administration of IC resulted in dermal DC mobilization. We confirmed that dermal DC migration to lymph nodes depended on CCR7 and increased in the absence of the inhibitory receptor FcγRIIB. These observations have relevance to autoimmunity because autoantibody-containing serum from humans with systemic lupus erythematosus (SLE) and from a mouse model of SLE also increased dermal DC migration in vivo, suggesting that this process may occur in lupus, potentially driving the inappropriate localization of autoantigen-bearing DCs. © 2014 Nature Publishing Group, a division of Macmillan Publishers Limited.


Grant
Agency: NSF | Branch: Interagency Agreement | Program: | Phase: BIOMEDICAL ENGINEERING | Award Amount: 300.00K | Year: 2011

None

Discover hidden collaborations