National Institute of Animal Biotechnology

Hyderabad, India

National Institute of Animal Biotechnology

Hyderabad, India
Time filter
Source Type

Sen Sharma S.,National Institute of Immunology | Majumdar S.S.,National Institute of Immunology | Majumdar S.S.,National Institute of Animal Biotechnology
Molecular and Cellular Endocrinology | Year: 2016

FSH mediated cyclic AMP (cAMP) signaling is crucial for function of testicular Sertoli cells (Sc) during puberty. Yes-kinase Associated Protein (YAP), a transcriptional co-activator, regulates cell proliferation and differentiation. However, its role in testicular function is not known. In present study, we have identified YAP as an important regulator of cAMP signaling in Sc, in-vitro. Verteporfin, a YAP-inhibitor, down regulated the expression of cAMP responsive genes necessary for spermatogenesis in Sc. Action of forskolin, which acts via cAMP, was also antagonized by verteporfin, limiting expression of these genes. Assessment of cAMP-responsive-element-binding-protein (CREB) phosphorylation revealed that verteporfin augmented the phosphorylation of CREB at Ser133 residue. This effect of verteporfin on CREB phosphorylation was attenuated by H-89, the PKA inhibitor. This clearly suggested involvement of PKA in verteporfin mediated CREB phosphorylation. We provided evidence for the first time that YAP modulates cAMP signaling in Sc which may be critical for testicular function. © 2017 Elsevier B.V.

Khan A.,Qassim University | Aljarbou A.N.,Qassim University | Aldebasi Y.H.,Qassim University | Faisal S.M.,Cornell University | And 2 more authors.
Cancer Epidemiology | Year: 2014

In breast cancer cells, overexpression of human epidermal growth factor receptor 2 (HER2) increases the translation of fatty acid synthase (FASN) by altering the activity of PI3K/Akt signaling pathways. Cancer chemotherapy causes major side effects and is not effective enough in slowing down the progression of the disease. Earlier studies showed a role for resveratrol in the inhibition of FASN, but the molecular mechanisms of resveratrol-induced inhibition are not known. In the present study, we examined the novel mechanism of resveratrol on Her2-overexpressed breast cancer cells.The effect of resveratrol on the growth of breast cancer cells was assessed as percent cell viability by cytotoxicity-based MTT assay and the induction of apoptosis was determined by cell-death detection ELISA and flow cytometric analysis of Annexin-V-PI binding. Western immunobloting was used to detect signaling events in human breast cancer (SKBR-3) cells.Data showed that resveratrol-mediated down-regulation of FASN and HER2 genes synergistically induced apoptotic death in SKBR-3 cells. This concurrently caused a prominent up-regulation of PEA3, leads to down-regulation of HER2 genes. Resveratrol also alleviated the PI3K/Akt/mTOR signaling by down-regulation of Akt phosphorylation and up-regulation of PTEN expression.These findings suggest that resveratrol alters the cell cycle progression and induce cell death via FASN inhibition in HER2 positive breast cancer. © 2014 Elsevier Ltd.

Horn T.,Charité - Medical University of Berlin | Horn T.,University of California at Santa Cruz | Adel S.,Charité - Medical University of Berlin | Schumann R.,Charité - Medical University of Berlin | And 7 more authors.
Progress in Lipid Research | Year: 2015

Leukotrienes are pro-inflammatory lipid mediators, which are biosynthesized via the lipoxygenase pathway of the arachidonic acid cascade. Lipoxygenases form a family of lipid peroxidizing enzymes and human lipoxygenase isoforms have been implicated in the pathogenesis of inflammatory, hyperproliferative (cancer) and neurodegenerative diseases. Lipoxygenases are not restricted to humans but also occur in a large number of pro- and eucaryotic organisms. Lipoxygenase-like sequences have been identified in the three domains of life (bacteria, archaea, eucarya) but because of lacking functional data the occurrence of catalytically active lipoxygenases in archaea still remains an open question. Although the physiological and/or pathophysiological functions of various lipoxygenase isoforms have been studied throughout the last three decades there is no unifying concept for the biological importance of these enzymes. In this review we are summarizing the current knowledge on the distribution of lipoxygenases in living single and multicellular organisms with particular emphasis to higher vertebrates and will also focus on the genetic diversity of enzymes and receptors involved in human leukotriene signaling. © 2014 Elsevier Ltd. All rights reserved.

Adel S.,Charité - Medical University of Berlin | Kakularam K.R.,University of Hyderabad | Horn T.,Charité - Medical University of Berlin | Horn T.,University of California at Santa Cruz | And 4 more authors.
Archives of Biochemistry and Biophysics | Year: 2015

Mammalian lipoxygenases (LOXs) have been implicated in cell differentiation and in the biosynthesis of pro- and anti-inflammatory lipid mediators. The initial draft sequence of the Homo neanderthalensis genome (coverage of 1.3-fold) suggested defective leukotriene signaling in this archaic human subspecies since expression of essential proteins appeared to be corrupted. Meanwhile high quality genomic sequence data became available for two extinct human subspecies (H. neanderthalensis, Homo denisovan) and completion of the human 1000 genome project provided a comprehensive database characterizing the genetic variability of the human genome. For this study we extracted the nucleotide sequences of selected eicosanoid relevant genes (ALOX5, ALOX15, ALOX12, ALOX15B, ALOX12B, ALOXE3, COX1, COX2, LTA4H, LTC4S, ALOX5AP, CYSLTR1, CYSLTR2, BLTR1, BLTR2) from the corresponding databases. Comparison of the deduced amino acid sequences in connection with site-directed mutagenesis studies and structural modeling suggested that the major enzymes and receptors of leukotriene signaling as well as the two cyclooxygenase isoforms were fully functional in these two extinct human subspecies. © 2014 Elsevier Inc. All rights reserved.

Deshmukh A.S.,National Institute of Animal Biotechnology | Agarwal M.,Jawaharlal Nehru University | Dhar S.K.,Jawaharlal Nehru University
Current Genetics | Year: 2016

Regulatory roles of CDKs in fundamental processes including cell cycle progression and transcription are well conserved in metazoans. This family of proteins has undergone significant evolutionary divergence and specialization. Several CDK-like kinases have been identified and characterized in parasitic protozoans. However, clear functional role and physiological relevance of these proteins in protozoans still remain elusive. In continuation with the recent finding that CDK-like protein PfPK5 regulates important DNA replication protein like origin recognition complex subunit 1 in Plasmodium falciparum, here we have discussed the emerging significance of CDK1/2 homologs in DNA replication of parasitic protozoans. In fact, involvement of these proteins in crucial cellular processes projects them as potential drug targets. The possibilities that CDKs offer as potential therapeutic targets in controlling parasite progression have also been explored. © 2016 Springer-Verlag Berlin Heidelberg

Kaimala S.,CSIR - Central Electrochemical Research Institute | Kaimala S.,United Arab Emirates University | Kumar S.,CSIR - Central Electrochemical Research Institute | Kumar S.,National Institute of Animal Biotechnology
Gene | Year: 2015

In mammals, the casein locus consists of stretches of non-coding DNA, the functions of most of which are unknown. These regions are believed to harbour elements responsible for spatio-temporally regulated expression of genes in this locus and so far, only a few such elements have been identified. In this study, we report a novel regulatory element in the casein locus. Comparative analysis of genomic DNA sequences of casein loci from different mammals identified a 147. bp long evolutionarily conserved region (ECR) upstream of Odam, a gene in this locus. The ECR was found in close proximity of Odam gene in all the mammals examined. In-silico analysis predicted the ECR as a potential regulatory element. Functional analysis in different cell lines identified it as a unidirectional repressor element. From our findings we speculate that the ECR may be involved in the repression of the Odam expression in the mammary gland during lactation. © 2014 Elsevier B.V.

Aparoy P.,University of Hyderabad | Reddy K.K.,University of Hyderabad | Reddanna P.,University of Hyderabad | Reddanna P.,National Institute of Animal Biotechnology
Current Medicinal Chemistry | Year: 2012

Lipoxygenases (LOXs) are non-heme iron containing dioxygenases involved in the oxygenation of polyunsaturated fatty acids (PUFAs) such as arachidonic acid (AA). Depending on the position of insertion of oxygen, LOXs are classified into 5-, 8-, 9-, 12- and 15-LOX. Among these, 5-LOX is the most predominant isoform associated with the formation of 5-hydroperoxyeicosatetraenoic acid (5- HpETE), the precursor of non-peptido (LTB4) and peptido (LTC4, LTD4, and LTE4) leukotrienes. LTs are involved in inflammatory and allergic diseases like asthma, ulcerative colitis, rhinitis and also in cancer. Consequently 5-LOX has become target for the development of therapeutic molecules for treatment of various inflammatory disorders. Zileuton is one such inhibitor of 5-LOX approved for the treatment of asthma. In the recent times, computer aided drug design (CADD) strategies have been applied successfully in drug development processes. A comprehensive review on structure based drug design strategies in the development of novel 5-LOX inhibitors is presented in this article. Since the crystal structure of 5-LOX has been recently solved, efforts to develop 5-LOX inhibitors have mostly relied on ligand based rational approaches. The present review provides a comprehensive survey on these strategies in the development of 5-LOX inhibitors. © 2012 Bentham Science Publishers.

Kallubai M.,University of Hyderabad | Rachamallu A.,National Institute of Animal Biotechnology | Yeggoni D.P.,University of Hyderabad | Subramanyam R.,University of Hyderabad
Molecular BioSystems | Year: 2015

Lupeol, a triterpene, possesses beneficial effects like anti-inflammatory and anti-cancer properties. Binding of lupeol and its derivative (phytochemicals) to plasma proteins such as human serum albumin (HSA) and α-1-acid glycoprotein (AGP) is a major determinant in the disposition of drugs. Cytotoxic studies with mouse macrophages (RAW 246.7) and HeLa cell lines revealed anti-inflammatory and anti-cancer properties for both lupeol and lupeol derivative. Both molecules reduced the expression of pro-inflammatory cytokines in LPS induced macrophages. Further, apoptosis was observed in HeLa cell lines when they were incubated with these molecules for 24 h. The fluorescence quenching of HSA was observed upon titration with different concentrations of lupeol and lupeol derivative; their binding constants were found to be 3 ± 0.01 × 104 M-1 and 6.2 ± 0.02 × 104 M-1, with binding free energies of -6.59 kcal M-1 and -7.2 kcal M-1. With AGP, however, the lupeol and lupeol derivative showed binding constants of 0.9 ± 0.02 × 103 M-1 and 2.7 ± 0.01 × 103 M-1, with free energies of -4.6 kcal M-1 and -5.1 kcal M-1 respectively. Molecular displacement studies based on competition with site I-binding phenylbutazone (which binds site I of HSA) and ibuprofen (which binds site II) suggest that lupeol binds site II and the lupeol derivative site I. Molecular docking studies also confirmed that lupeol binds to the IIIA and the lupeol derivative to the IIA domain of HSA. Secondary structure changes were observed upon formation of HSA-lupeol/lupeol derivative complexes by circular dichroism spectroscopy. Molecular dynamics simulations support greater stability of HSA-lupeol and HSA-lupeol derivative complexes compared to that of HSA alone. © The Royal Society of Chemistry 2015.

Smith J.A.,University of Wisconsin - Madison | Khan M.,University of Wisconsin - Madison | Magnani D.D.,University of Wisconsin - Madison | Harms J.S.,University of Wisconsin - Madison | And 4 more authors.
PLoS Pathogens | Year: 2013

Brucella melitensis is a facultative intracellular bacterium that causes brucellosis, the most prevalent zoonosis worldwide. The Brucella intracellular replicative niche in macrophages and dendritic cells thwarts immune surveillance and complicates both therapy and vaccine development. Currently, host-pathogen interactions supporting Brucella replication are poorly understood. Brucella fuses with the endoplasmic reticulum (ER) to replicate, resulting in dramatic restructuring of the ER. This ER disruption raises the possibility that Brucella provokes an ER stress response called the Unfolded Protein Response (UPR). In this study, B. melitensis infection up regulated expression of the UPR target genes BiP, CHOP, and ERdj4, and induced XBP1 mRNA splicing in murine macrophages. These data implicate activation of all 3 major signaling pathways of the UPR. Consistent with previous reports, XBP1 mRNA splicing was largely MyD88-dependent. However, up regulation of CHOP, and ERdj4 was completely MyD88 independent. Heat killed Brucella stimulated significantly less BiP, CHOP, and ERdj4 expression, but induced XBP1 splicing. Although a Brucella VirB mutant showed relatively intact UPR induction, a TcpB mutant had significantly compromised BiP, CHOP and ERdj4 expression. Purified TcpB, a protein recently identified to modulate microtubules in a manner similar to paclitaxel, also induced UPR target gene expression and resulted in dramatic restructuring of the ER. In contrast, infection with the TcpB mutant resulted in much less ER structural disruption. Finally, tauroursodeoxycholic acid, a pharmacologic chaperone that ameliorates the UPR, significantly impaired Brucella replication in macrophages. Together, these results suggest Brucella induces a UPR, via TcpB and potentially other factors, that enables its intracellular replication. Thus, the UPR may provide a novel therapeutic target for the treatment of brucellosis. These results also have implications for other intracellular bacteria that rely on host physiologic stress responses for replication. © 2013 Smith et al.

Yeggoni D.P.,University of Hyderabad | Rachamallu A.,National Institute of Animal Biotechnology | Subramanyam R.,University of Hyderabad
RSC Advances | Year: 2016

The binding of corilagin with plasma serum proteins like human serum albumin (HSA) and α-1-acid glycoprotein (AGP) was investigated under physiological conditions. To understand the pharmacological importance of the corilagin molecule, anti-inflammatory activity on mouse macrophages (RAW 264.7) cell lines was studied. This study reveals that corilagin caused an increase in inhibition growth of inflamed macrophages in concentration-dependent manner with an IC50 value of 66 μM. Further, intrinsic fluorescence of HSA and AGP was quenched upon titration of corilagin, and the binding constants obtained from fluorescence emission was found to be Kcorilagin 4.2 ± 0.02 × 105 M-1 which corresponds to the free energy of -7.6 kcal M-1 at 25°C for a HSA-corilagin complex. Interestingly, corilagin showed binding with AGP, an acute phase protein, and the binding constant was found to be Kcorilagin = 1.5 ± 0.01 × 104 M-1 and its free energy was -5.6 kcal M-1 at 25°C. Further, the average binding distance, r, between the donor (HSA) and acceptor (corilagin) was calculated and found to be 1.32 nm according to Förster's theory of non-radiation energy transfer. Later, circular dichroism studies emphasized that there are marginal changes in secondary structural conformation of HSA in the presence of corilagin. Corilagin is specifically bound to site I of HSA which was proved by site specific marker, phenylbutazone. Furthermore, the binding details between corilagin and HSA revealed that corilagin was bound to subdomain IIA through multiple interactions like hydrogen bonding and hydrophobic effects. Molecular dynamic studies (MD) also suggest that binding is very precise to site I (IIA domain) on HSA. Also, MD studies showed that HSA-corilagin complex reaches equilibration state at around 4 ns, which proves that the HSA-corilagin complex is stable in nature, hence the experimental and computational results are in agreement. Thus, examining the interaction mechanism of corilagin with plasma proteins may play a critical role in developing corilagin inspired drugs. © The Royal Society of Chemistry 2016.

Loading National Institute of Animal Biotechnology collaborators
Loading National Institute of Animal Biotechnology collaborators